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Abstract: Quantitative measures of error are needed to complement subjective characterization of shape characteristics 
in the assessment of line simplication algorithms. Areal displacement is one of six metrics recommended for this 
purpose by McMaster in 1986. However, previous cartographers have failed to notice semantic ambiguities that 
obfuscate its meaning. This paper discusses semantic and computational aspects of areal displacement. Three distinct 
semantic definitions are identified. A simple definition derived from topological enclosure is shown to produce 
unintuitive results in certain regularly encountered situations. A more intuitively valid measure of areal displacement as 
a dynamic process is captured by the topological concept of minimum homotopy area, but robust, practical and efficient 
computation remains an active area of research. A third definition, referred to as shift displacement, is proposed that 
derives from the perspective of external regions that "shift sides" during the transformation of a line to its simplified 
form. A simple yet robust and computationally efficient algorithm is presented for computing displacement under the 
proposed definition.  
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1. Introduction
Procedures to simplify lines and polygons play an 
important role in cartographic production and data 
dissemination. To evaluate alternative line simplification 
procedures, standardized error metrics are needed that 
describe the degree to which a simplified line diverges 
geometrically from the original line from which it was 
derived. Similar measures of displacement are required 
for assessing the positional accuracy of one line with 
respect to another reference line (). One natural class of 
metrics that has been proposed is areal displacement 
(McMaster 1986), which may loosely be described as the 
area separating the original and simplified line. Areal 
displacement has been used by several authors to quantify 
error in line simplification algorithms (White 1985, 
Visvalingam and Whyatt 1990, Shen et al 2018, 
Stanislawski et al. 2018), and has been observed to 
provide a good characterization of shape retention in the 
early (i.e. "weeding") stages of simplification (Muller 
1987, Visvalingam and Whyatt 1990). It is also the 
objective function minimized locally at each step in the 
widely used algorithm of Visvalingam and Whyatt 
(1993).  
It is possible that most authors assume measurement of 
areal displacement to be uncomplicated. McMaster 
describes computation simply as a matter of summing the 
"areal… difference between the base line and 
simplification" (McMaster 1986, p. 112). Other authors 
similarly describe measuring the area of "error polygons" 
(White 1985, p. 21) or else simply refer to MacMaster's 
1986 paper as authoritative (Visavalingam and Whyatt 

1990, Shen et al. 2018). On the other hand, there exist 
certain ambiguities in the definition of areal displacement 
that are well-known in mathematical topology (Chambers 
and Vejdemo-Johansson 2015). Although these 
ambiguities were not mentioned by earlier cartographic 
researchers, our experience suggests that they are 
unlikely to have gone entirely unnoticed by them, and 
instead we suspect that the problems they caused were 
handled individually on a case-by-case basis using 
"common sense" fixes. Such an approach, however, risks 
inconsistency and systematic bias. 
To illustrate the problem to the skeptical reader and thus 
motivate the remainder of the paper, a scenario is 
presented in which naïve measurement of areal 
displacement as the simple sum of areas of enclosed 
polygons produces a rather unintuitive and misleading 
result (Figure 1). 

Figure 1. A simple scenario in which measuring areal 
displacement as the sum of areas of enclosed polygons leads to 
unintuitive results. 
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In this and remaining figures, the original polyline (α) is 
shown as a dashed blue line and the simplified polyline 
(β) as a solid black line. The polylines in Figure 1 start 
and end at the same locations and intersect each other at 
three other points. The total area of the enclosed polygons 
is A+B+C+D (for simplicity, hereafter a capital letter is 
used to refer to both a simple enclosed polygon and its 
area). Intuitively, however, it does not seem right to 
include the large central polygon C in a measure of areal 
displacement. For one thing, this region seems to be 
within a large bend of both polylines, in the same general 
position with respect to each one and therefore not 
"displaced". Furthermore, no part of either polyline needs 
to pass through this region in order to be transformed into 
the other; to bring the two lines into concordance, one can 
imagine pulling the lower left-protruding bends in α to 
the right across A, B & D until they match  exactly, 
without ever passing through polygon C.   
Indeed, it will be shown that at least three different 
definitions of areal displacement are possible, each 
reasonable and intuitive. What's more, the three 
definitions lead to different values for the scenario 
depicted in Figure 1, as well as for other well-defined 
scenarios. On the other hand, they lead to exactly the 
same value for a simpler "standard" scenario, and thus 
their distinction is likely to be missed by the casual 
observer. This paper aims to expose the cartographic 
community to these different possible interpretations of 
areal displacement and to discuss issues involved in their 
definition, computation and interpretation. 
The paper begins by describing four commonly 
encountered types of crossing patterns that can exist 
between two polylines that share the same start and end 
points. Three alternative measures of areal displacement 
are then defined, their differences are illustrated for each 
crossing pattern, and their computation is discussed. The 
third measure, shift dispacement, is novel as far as we are 
aware, certainly in its application to cartographic 
generalization although the underlying concepts are well 
known in the mathematical topology community. Shift 
displacement represents an alternative to existing metrics 
that balances the need for practical, efficient computation 
with semantic plausibility, for example avoiding the 
undesirable result described above for Figure 1. The final 
section discusses differences between metrics and 
avenues for future research.  
Throughout, we assume that the original and simplified 
polylines share the same start and end points. This is 
guaranteed with most existing line simplification 
algorithms. 

2. Crossing Patterns 
When considering the concordance of two polylines α 
and β, it is useful to begin by enumerating their 
intersection points. The sequence and topology of these 
intersections, their adjacent line segments and enclosed 
regions yields a typology of crossing patterns, illustrated 
in Figure 2.  
A standard crossing pattern (Figure 2a) may be defined as 
one in which each polyline traverses the intersection 

points in the same sequence and each line segment runs 
along the unbounded exterior region. In such a pattern, 
enclosed polygons will alternate to the right and left of 
each polyline, touching only at their intersection points 
(e.g. point b in Figure 2a). 

 
Figure 2: Crossing patterns between two polylines sharing the 
same start and end points. (a) standard, (b) back-crossing, (c) 
enclosed endpoint, and (d) self-intersection. 

A non-standard crossing pattern consists of at least one of 
three elements. A back-crossing (Figure 2b) occurs when 
one polyline traverses the intersections in a different 
sequence than the other. For example, in Figure 2b the 
intersections are traversed in sequence [adcbe] along α, 
but in sequence [abcde] along β. An enclosed endpoint 
(Figure 2c) occurs when either the shared start or end 
point is fully enclosed by any set of line segments. For 
example, in Figure 2c the shared start point a of both 
lines is fully enclosed by line segments α2 and β2. Lastly, 
a self-intersection (e.g. point e in Figure 2d) occurs when 
either polyline crosses itself. Note that any combination 
of back-crossings, enclosed endpoints and self-
intersections may occur, resulting in a variety of complex 
topological configurations. 
Non-standard patterns are likely to occur at least 
occasionally as the result of any line simplification 
algorithm. Back-crossings will occur when a sinuous 
feature with a "double-meander" (such as the dashed line 
in Figure 2b) is simplified to a sufficient degree, as 
extreme simplification will eventually result in a straight 
line. For an enclosed endpoint to occur, it is only 
necessary that a large spiraling meander appears near the 
beginning or end of the feature. Finally, self-intersections 
often occur as an unintended artifact of line 
simplification, and while various algorithm enhancements 
and post-processing methods have been developed to 
avoid or remove self-intersections (e.g. Saalfeld 1999, 
Lee and Hardy 2005, Raposo 2013), they can be 
computationally expensive and are not universally 
implemented. Although many consider self-intersections 
to be unacceptable in any cartographic process, we 
include them in our analysis for completeness. 
The effects of non-standard patterns can be large even 
when they involve only small portions of the polyline. 
This is especially true when back-crossings and self-
intersections occur at narrow gaps between sequentially 
distant portions of the polyline. For example, the situation 
depicted in Figure 1 is topologically equivalent to Figure 
2b, but the effect is more pronounced due to the geometry 
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of the polyline. Similar examples frequently occur due to 
self-intersections.  

3. Alternate Definitions of Areal Displacement 
We now introduce three different ways of defining areal 
displacement, each of which seems natural and intuitive 
(Figure 3). Displacement area may be defined simply as 
the total area of all regions in the plane that are 
completely enclosed by sections of α and β (Figure 3a). 
Alternatively, one may define areal displacement as the 
minimum area swept across in a continuous 
transformation of α to β (Figure 3b). Lastly, if regions are 
marked as being to the right or left of each polyline, then 
the displacement area may be conceptualized as the total 
area that is on one side of α but the other side of β, i.e. the 
area that "shifts sides" when α is transformed to β (Figure 
3c). 

 
Figure 3: Three definitions of areal displacement applied to a 
standard crossing pattern: (a) δenclosure, (b) δsweep, and (c) δshift. 

We denote these three alternative definitions as δenclosure, 
δsweep, and δshift respectively. Among these, δenclosure seems 
most equivalent to the concepts of White (1985) and  
McMaster (1986), while δsweep is the minimum homotopy 
area in computational topology (Chambers andWang 
2013, Fasy et al. 2017). As far as we are aware, δshift has 
not been previously described. 
The preceding definitions all seem intuitive, and in the 
case of a standard crossing pattern they yield identical 
results. However, results differ in non-standard patterns. 
We now discuss the computation of each metric and 
illustrate the differences between them.  

4. Enclosure 
We formally define enclosure (δenclosure) as the sum of 
absolute areas of all non-overlapping, simple polygons 
that are completely enclosed by one or more segment of 
either polyline (Figure 4). These are the "error polygons" 
of White (1985), but our definition explicitly includes 
regions surrounded by segments of just one polyline, as 
can happen in the case of self-intersection.    

 
Figure 4: Enclosure for three non-standard crossing patterns. (a) 
back-crossing (δenclosure=A+B+C+D), (b) enclosed endpoint 
(δenclosure=A+B), and (c) self-intersection (δenclosure=A+B+C+D). 

To calculate δenclosure it is first necessary to enumerate the 
simple error polygons. This can be accomplished with 
standard computational algorithms, i.e. by (a) identifying 
all intersections between α and β as well as all self-
intersections, (b) constructing a graph from the edges 
between intersections, and (c) enumerating the faces of 
the graph (de Berg et al. 2008). It is also possible to use 
existing GIS tools to construct error polygons, and in the 
case of a standard crossing pattern these tools will 
produce consistent results. However, this is not true for 
other crossing patterns. For example, we found that for 
the back-crossing configuration shown in Figure 4a, 
ArcGIS produces all four polygons, whereas QGIS only 
produces A and D. Therefore, care must be taken when 
using standard GIS tools on non-standard topological 
configurations to ensure that the results conform to the 
intended formal definition of the error metric. 
Separate from computational issues, δenclosure may be 
questioned at a semantic level. As shown in Figure 1, 
there can be enclosed regions that seem conceptually 
irrelevant to the concept of displacement. Similarly, if α 
and β are closed polygons (e.g. a lake), then it is usually 
"obvious" that at least one large internal polygon should 
be excluded since they represent the interior of the lake in 
both versions. However, by the same logic sometimes 
more than one polygon should be excluded from areal 
displacement (e.g. polygons marked * in Figures 5). In 
the case of self-intersection there are also cases where 
one might reasonably conclude that an enclosed polygon 
should be counted twice. For example, the polygon 
marked ** in Figure 5b is clearly in the interior of α, but 
its relation to β is not as obvious. Arguably, it is located 
on the exterior of both surrounding line segments and is 
thus "twice exterior". Thus, caution must be applied when 
using δenclosure to ensure that the results are semantically 
meaningful and unambiguous when applied to a 
particular dataset. For use across multiple datasets, or as a 
general measure of areal displacement, δenclosure does not 
seem justifiable in the cases illustrated. 
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Figure 5: Configurations where semantic meaning of δenclosure 
seems questionable: (*) enclosed polygons seem obviously 
irrelevant to areal displacement, (**) enclosed polygon should 
perhaps be counted twice. 

5. Minimum Homotopy Area 
The minimum homotopy area (δsweep) is the smallest total 
area of individual homotopy moves required to transform 
α to β, where a homotopy move involves sweeping one or 
more polyline segments across an enclosed polygon 
(Chambers and Wang 2013, Fasy et al. 2017). This is 
illustrated in Figure 6. For example, in the back-crossing 
pattern (Figure 6a), δsweep is A + 2B + D, obtained 
through the following homotopy moves:      

1) α2  β3   (B) 
2)  [α3,β3,α1]  β1 (A) 
3)  α4  [β2,β3,β4]  (B+D) 

Note that a transformation from α to β could also be 
achieved by sweeping twice through C instead of B, but 
this would result in a larger area. Since the two sequences 
are topologically identical, this indicates that computation 
of δsweep is a combinatorial problem that cannot be solved 
by topological analysis alone. Instead, it requires 
checking alternative sequences of homotopy moves to 
find the one that sweeps over the minimum area. 

Figure 6: Minimum homotopy area (δsweep) for three non-
standard crossing patterns. (a) back-crossing (δsweep=A+2B+D), 
(b) enclosed endpoint (δsweep=2A+B), and (c) self-intersection 
(δsweep=A+2B+C+D). 

Chambers and Wang (2013) present an algorithm for 
computing δsweep that is robust in the absence of self-
intersections on either α or β. Their algorithm is based on 
the observation that computation of δsweep is trivial for any 
subsection of the input polylines for which the error 
polygons have either consistently non-negative or 
consistently non-positive winding number (see below). 
For other cases, they divide the difference polygon into 
sections with consistent winding number and no back-
crossings. Although their algorithm is reasonably 
straightforward, it is not trivial and does not appear to 
have been implemented yet (Chambers and Vejdemo-

Johansson 2015), perhaps because a more robust 
algorithm that can handle self-intersecting input polylines 
is sought. Fasy et al. (2017) describe an approach for 
handling self-intersections that involves searching for and 
processing a broader class of self-overlapping sub-
polygons, and Evans (2018) presents some simplifying 
concepts that may facilitate eventual implementation.  
The minimum homotopy area appears to be a 
conceptually robust and intuitive specification of areal 
displacement, because it captures the essence of 
displacement as a dynamic process. That is, the 
transformation of α to β through a series of homotopy 
moves is analagous to the simplification of a polyline in a 
series of steps, where each homotopy move captures the 
areal displacement introduced at each step. In a standard 
crossing pattern (Figure 3), each simple enclosed polygon 
will be swept across exactly once, so that δsweep = δenclosure. 
In a back-crossing (Figure 6a), at least one interior 
polygon will need to be swept across twice, but at least 
one other will not need to be swept across at all, resulting 
in δsweep  δenclosure. In the case of an enclosed endpoint 
(Figure 6b) or self-intersection (Figure 6c), at least one 
interior polygon will need to be swept across twice, 
resulting in δsweep > δenclosure. 
Unfortunately, an implementation of the minimum 
homotopy area computation is not yet available. It would 
be useful if at least of the algorithm by Chambers and 
Wang (2013) were implemented, but until this  becomes 
available other measures are needed. We now introduce a 
third measure of areal displacement that shares some 
desirable properties of minimum homotopy area, but is 
much simpler to compute. 

6. Shift Displacement 
Imagine an observer traversing first the original polyline 
and then later the simplified polyline in the same 
direction. On the second traversal, the observer will 
notice that some regions observed to the left of the 
polyline in the first traversal have now shifted to the 
right, and others have shifted from right to left, as a result 
of simplification. The regions left and right of each 
section of each polyline are illustrated in Figure 7 for the 
three non-standard crossing patterns.  

 
Figure 7: Left and right relations for three non-standard crossing 
patterns. (a) back-crossing, (b) enclosed endpoint, and (c) self-
intersection. 

In the standard and back-crossing patterns, the regions 
that are left and right of each enclosed polygon can be 
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defined unambigously. For example, in Figure 7a, regions 
A is left of both adjacent segments of α, but right of both 
adjacent segments of β. As such, it has switched sides and 
should be included in shift displacement. On the other 
hand, region B is left of both α and β and thus should not 
be included in shift displacement.  
The simple definition above becomes ambiguous in the 
presence of enclosed endpoints and self-intersections. For 
example, in Figure 7b region B is left of one segment on 
α but right of the other, and same is true of β. Similarly, 
in Figure 7c regions A & D are on both sides of different 
segments of α.  
If the notions of left and right are ambiguous, then they 
must be replaced by similar but unambiguous concepts. A 
key insight is gained by considering each polyline to be 
part of the boundary of a larger polygon. To effect this 
reconceptualization, we construct an arbitrary polyline γ 
connecting the shared end point of α and β to their shared 
start point, and then construct polygon α' = [α+γ] and 
polygon β' = [β+γ] (Figure 8). The boundaries of 
polygons α' and β' are thus identical everywhere except 
for the section between the shared start and end points of 
the original and simplified polylines being evaluated. We 
then define δshift as the shift in area from the interior of α' 
to the exterior of β', plus the shift in area from the 
exterior of α' to the interior of β'.  
This solution introduces another problem, however, as the 
cases of enclosed endpoint and self-intersecting polyline 
both necessarily lead to at least one self-intersecting 
polygon. We have succeeded in merging these two 
problems into one, but what, then, are the interior and 
exterior of a self-intersecting polygon? 

 
Figure 8: Shift displacement for three non-standard crossing 
patterns, calculated as the area of each simple polygon 
multiplied by its difference in winding number with respect to α' 
and β' (indicated by numbers within each simple polygon): (a) 
back-crossing (δshift=A+D), (b) enclosed endpoint (δshift=2A+B), 
and (c) self-intersection (δshift=A+2B+C+D). 

To answer this we turn to the well known topology  
concept of winding number (Figure 9). For any connected 
subregion A of a polygon P, the winding number 
wn(A,P) is defined as the number of times the boundary 
of P winds clockwise around A. Counterclockwise 
windings are assigned negative winding numbers, while 
the exterior of the polygon has a winding number of 0.  
The winding number naturally finds its way into many 
spatial algorithms. For example, a winding number 
algorithm provides correct results for the point-in-
polygon problem in the presence of self-overlapping 
polygons (Sunday 2012). Most notably for our purposes, 
if the standard surveyor's formula is used to compute the 

area of a self-intersecting polygon, the computed area 
will equal the sum of the areas of each subregion times 
their winding number (Courant 1934, pp. 311-314). This 
makes sense when one considers a continuous transition 
from an ordinary polygon (i.e. a single region with 
winding number = 1) to one with subregions with 
winding numbers of 2, -1, etc. For example, a region in 
which a polygon overlaps itself is assigned a winding 
number of 2. This can be interpreted as indicating that the 
region is covered twice by the polygon. In fact, the 
winding number of a region within a polygon is also 
sometimes referred as its density (Grünbaum and 
Shephard 1990). 
 

 
Figure 9: Illustration of the winding number for sections of a 
self-intersecting polygon.  

This observation leads to a natural definition of δshift1q as 
the sum of the absolute areas of simple non-overlapping 
enclosed polygons, multiplied by the differences in their 
winding numbers in α' and β'. This can be expressed by 
the following formula: 

 (1) 

where P is the set of enclosed polygons.  
In a standard crossing pattern, all enclosed polygons will 
have differences in winding number of -1 or +1, so that 
δshift = δenclosure. Returning to the examples in Figure 8, for 
the back-crossing pattern (Figure 8a) we see that the 
formal definition yields the same result as our informal 
definition based on left/right relations, with regions B and 
C excluded because both wn(B,α')=wn(B,β') and also 
wn(C,α')=wn(C,β'). Thus, for back-crossings we can say 
generally that δshift < δenclosure. In the case of an enclosed 
endpoint (Figure 8b) or self-intersection (Figure 8c), at 
least one interior polygon will have a difference in 
winding numbers of 2 or more, resulting in δshift > 
δenclosure.  
Note that while the choice of γ will influence the way that 
error polygons are partitioned, it will not influence the 
difference in winding number at any location, and 
therefore will not influence the value of δshift. This is 
because the winding number of a point can be determined 
by counting the number of right-to-left and left-to-right 
crossings from that point to infinity in any direction 
(Grünbaum and Shephard 1990). Since γ is shared by α' 
and β', it will contribute the same number of R-L and L-R 
crossings from any given location, and thus have the 
same influence on winding number.  
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7. Algorithm to Calculate δshift  
Although the addition of the arbitrary polyline γ is helpful 
to illustrate the meaning of δshift, it is not necessary for its 
calculation. Instead, calculation can be performing on the 
(self-intersecting) difference polygon created by 
appending β (in reverse) to α. The general strategy is to 
detect and insert self-intersections on the difference 
polygon, and then to use the standard shoelace formula to 
calculate the area of the difference polygon by summing 
the trapezoid under each line segment, but with the 
modification that the sign of the summed term is reversed 
whenever the winding number on the left becomes 
negative. 

7.1 Detecting Intersections 
To keep track of winding numbers during traversal, it is 
necessary to identify and insert vertices at self-
intersections. This process is not trivial, so some 
discussion is warranted. Algorithms to detect self-
intersection generally depend on pairwise analysis, i.e. 
they look at each pair of segments i and j independently. 
Efficient sweep algorithms avoid performing this test on 
every segment pair  (de Berg et al. 2008), but they still 
employ a basic pairwise intersection test at their core. 
Problems can occur, however, in the case of self-
osculatory and overlapping polygons (Grünbaum and 
Shephard 1990; Figure 10). A self-osculatory polygon is 
one in which at least one vertex lies directly on a segment 
to which it does not belong (e.g. vertices 4,7 & 11 in 
Figure 10). Similarly, an overlapping polygon is one in 
which an extended portion of one segment lies coincident 
with another segment (e.g. segments[2,3], [5,6], [13,14] 
and [19,20] in Figure 10).  

 
Figure 10: Special cases that must be handled when detecting 
self-intersections. 

Self-osculation and overlap will be especially prevalent in 
difference polygons formed from the chaining together of 
two versions of the same polyline, as is the case in line 
simplification. This is because any segment that escapes 
alteration during the simplification process will 
automatically overlap its original counterpart, and any 
unaltered vertex whose neighboring vertices are altered 
will form a self-osculation. 
The reason why self-osculatory and overlapping polygons 
create problems for topological analysis is that in these 
cases, more than two segments are required to determine 
if an intersection truly occurs or not. Nevertheless, it is 
possible to identify self-intersections necessary for 
calculating δshift and other areal properties correctly 
through pairwise analysis, so long as one accepts that two 
intersections might be inserted where none are really 
needed. For example, we will get correct results if the 
segment [5,6] and segment chain [12,13,14,15] in Figure 

10 are found not to intersect at all, but we will also get 
correct results if they are found to intersect twice at the 
locations of vertices 13 and 14. In the latter case, an 
implicit zero-area region is created between vertices 13 
and 14, but this will not affect our area calculations. 
Such cases should be regularly handled in GIS overlay 
operations such as union and intersection, but we are not 
aware of any public description of a robust handling 
procedure so we provide one here. When comparing two 
line segments, let us refer to the lower id segment as the 
baseline and the higher id segment as the crossing 
segment. We first pre-process the difference polygon to 
remove any sequential coincident vertices. Then, for each 
candidate pair of segments, the following rules are used 
to determine if they are considered to intersect: 

1) If the baseline start vertex lies exactly on the 
crossing segment, there is no intersection 

2) If the baseline end vertex lies exactly on the crossing 
segment, extend the baseline to include the next 
sequential vertex 

3) An intersection occurs if the two crossing segment 
vertices are on different sides (R or L) of the 
baseline 

4) If a crossing segment vertex lies exactly on the 
baseline, it is considered to lie to the right of the 
baseline  

The result of applying these rules to the difference 
polygon in Figure 10 is shown in Table 1. A total of two 
intersections are found, one in the region of overlap 
between [2,3] and [18,19,20,21] and the other on the self-
osculation between [3,4,5] and [16,17]. No intersections 
are found between [5,6] and [12,13,14,15] or between 
[6,7,8] and [10,11,12]. To test symmetrical cases, the 
same rules were applied to the vertically flipped image of 
Figure 10. The results are similar, but with two 
intersections instead of zero between [5,6] and 
[12,13,14,15], and also between [6,7,8] and [10,11,12]. 
 

B1 B2 B1 on X? B2 on X? B3 X1 X2 Int? Flip Int? 
2 3    18(L) 19(R) yes no 
2 3    19(R) 20(R) no no 
2 3    20(R) 21(R) no yes 
3 4  yes 5 16(R) 17(L) yes yes 
4 5 yes   16 17 no no 
5 6    12(R) 13(R) no yes 
5 6    13(R) 14(R) no no 
5 6    14(R) 15(R) no yes 
6 7  yes 8 10(R) 11(R) no yes 
6 7  yes 8 11(R) 12(R) no yes 
7 8 yes   10 11 no no 
7 8 yes   11 12 no no 

Table 1: Example of rule-based intersection test applied to 
candidate segment pairs in Figure 10. Each candidate pair of 
baseline B (B1-B2) and crossing line X (X1-X2) is assessed as 
follows: (a) if B1 is on X, there is no intersection, (b)  if B2 is 
on X, B is extended to the next vertex (B3), (c) vertices X1 and 
X2 are marked as either right or left of B, with vertices exactly 
on B marked as right of B, (d) an intersection occurs if X1 and 
X2 are marked as being on opposite sides of B. The last column 
applies the same test to the vertically flipped image of Figure 
10.  
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7.2 Tracking Winding Number 
Once the difference polygon is constructed and vertices 
are inserted at intersections, the value of δshift can be 
computed much more simply than δsweep because there are 
no permutations that need to be evaluated and compared. 
In fact, the difference polygon captures all areas that have 
shifted, and the winding number of each subregion in this 
polygon is exactly equal to the difference in winding 
numbers between the same subregion in α' and β'. 
As a result, δshift can be calculated with a simple 
modification to the standard "shoelace" algorithm used to 
compute polygon area. Recall that this algorithm 
automatically multiplies the area of each sub-region by its 
winding number (Courant 1934). Modification is 
necessary to distinguish between regions with positive 
and negative winding area, which would cancel each 
other out using the standard formula. To prevent this, we 
simply reverse the sign when the winding number is 
negative. That is, we first identify a line segment on the 
outer boundary with known winding number to its right, 
and then keep track of the winding number to the right as 
we traverse the polygon boundary. The simple rule is that 
if a segment has a winding number w before an 
intersection, then the winding number after the 
intersection is w+1 if the intersecting segment crosses 
from right to left, otherwise it is w-1 (Figure 11; 
Grünbaum and Shephard 1990). For any segment for 
which this winding number is less than one, we multiply 
the corresponding term in the shoelace formula by -1.  

 

 
Figure 11: Tracking winding number on the right side while 
traversing the polygline.  

7.3 Complete Algorithm 
Combining the above observations, a complete algorithm 
for calculating δshift is as follows: 

function δ_shift(α,β w/ shared endpoints): 
 
 // obtain difference polygon 
 P  reverse direction of β and append to α 
 insert self-intersections into P 
 
 // obtain first segment and winding number 
 s  index of any vertex of P such that  
   [s,s+] lies on outer hull of P 
 w  1  if null polygon is left of [Ps,Ps+],  
 w  -1 otherwise  
 
 // initialize δshift 
 δshift = 0 
 
 // loop through all segments 
 i  s 
 do: 
  // update δshift 
  a = (xi+–xi) (yi+yi+)/2 
  δshift += a if w > 0,  
  δshift -= a otherwise  
 

  // update vertex id 
  i  i+ 
 
  // update winding number 
  if Pi is a self-intersection: 
   w -= 1 if Pi is crossed from L to R 
   w += 1 otherwise  
 until i==s 
 return δshift 

where Pi is the vertex on P with index i, xi and yi are 
the coordinates of Pi, and i+ is the index of the next 
vertex in sequence along P after Pi, i.e. i+=i+1 
unless Pi is the last vertex of P,  in which case i+=1. 

8. Discussion 
Despite its status as a primary quantitative measure of 
error in line simplification, the concept of areal 
displacement has not been formally defined within the 
cartographic community. This paper identifies three 
distinct semantic definitions of areal displacement and 
illustrates that they can sometimes lead to dramatially 
different values. Most notably, it is demonstrated that the 
naïve method of calculating the total area of enclosure 
leads to potentially misleading values, especially when 
the original and simplified polylines conspire to isolate a 
large region by bridging a narrow gap that connects that 
region with the exterior of both polylines, either due to a 
back-crossing or a self-intersection. Additionally, the 
naïve measure of enclosure fails to double count regions 
that are doubly displaced, either due to an enclosed 
endpoint or a self-intersection. These problems are 
resolved by the topological definition of minimum 
homotopy area, which we consider semantically to be 
very appealing, but tools for its computation are not 
currently available.  
A third definition of areal displacement, referred to as 
shift displacement, is introduced in this paper and shown 
to be a practical alternative to existing measures. 
Conceptualized informally as the area that shifts to the 
left or right during simplification, it is defined formally in 
terms of changes in the measured areas of a presumed 
polygon on either side of the polyline being simplified. 
As such it seems semantically appropriate when the 
effects of simplification on area measurement are 
important, or when one wishes to quantify the total area 
affected by the simplification process.  
Even in cases in which minimum homotopy area seems 
more appropriate semantically, we observe that shift 
displacement appears to provide a better approximation 
of minimum homotopy area than enclosure in most cases. 
In particular, shift displacement avoids the misleading 
inclusion of large enclosed polygons mentioned above 
and illustrated in Figure 1 and Figure 5a,  and also 
double-counts most regions of double-overlap created by 
enclosed endpoints and self-intersections, as illustrated in 
Figure 5b. On the other hand, shift displacement does not 
include some regions that must be swept through twice in 
a continuous transformation from the original to the 
simplified polyline, such as the smaller "empty" region of 
a back-crossing (e.g. polygon B in Figures 1 and 7a) as 
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well as some instances of overlap created by more 
complex self-intersection scenarios (not shown). 
Although this paper illustrated several non-standard 
topological configurations that pose challenges for 
defining areal displacement, it remains unknown how 
often such configurations occur in real-world scenarios, 
and how severe the effects are on the three metrics 
described here. Self-intersections can be avoided with 
some simplification algorithms, but this comes with a 
cost in terms of computation time. Back-crossings and 
enclosed endpoints do not violate any logical constraint, 
so it must be assumed they they can occur in any given 
setting. Further research is required to assess empirically 
the frequency of non-standard patterns and their influence 
on measures of areal displacement.  
While this paper presents some quantitative measures of 
areal displacement for use in evaluating simplified line 
features, cartographic generalization has multiple aims, 
and quantitative assessment of error should be used 
appropriately in conjunction with visual assessment 
methods (Stoter et al. 2014). In many situations, 
quantitative metrics of fidelity will be of secondary 
importance to shape recognition and simplicity, as 
illustrated for example by recent increased interest in 
schematization (Mackaness and Reimer 2014). On the 
other hand, cartographic generalization is also an integral 
part of data modeling and data dissemination by national 
mapping agencies (Weibel and Dutton 1999), and there 
has been increased interest in preserving line 
characteristics for specific analytical purposes, such as 
hydrologic analyses (Stanislawski et al. 2015).   
When a single quantitative error measure is needed to 
assess the degree of distortion introduced by line 
simplification, areal displacement should be considered a 
foundational measure. Unlike the Hausdorff and Frechet 
distances which measure the maximum distortion, areal 
displacement provides a measure of average distortion 
when divided by the length of the original or simplified 
line (Veregin 2000). In these cases, our analysis suggests 
that minimum homotopy area should be considered as 
best capturing the general notion of "displacement", but 
that shift displacement should be preferred over enclosure 
due to its similarity to minimum homotopy area and its 
semantic appeal in capturing changes in coverage of 
adjacent regions.   
Note: A robust open source python implementation of 
shift displacement will be made available prior to 
publication. 
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