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Abstract: SmarterRoutes aims to improve navigational services and make them more dynamic and personalised by
data-driven and environmentally-aware road scene complexity estimation. SmarterRoutes divides complexity into two
subtypes: perceived and descriptive complexity. In the SmarterRoutes architecture, the overall road scene complexity is
indicated by combining and merging parameters from both types of complexity. Descriptive complexity is derived from
geospatial data sources, traffic data and sensor analysis. The architecture is currently using OpenStreetMap (OSM) tag
analysis, Meten-In-Vlaanderen (MIV) derived traffic info and the Alaro weather model of the Royal Meteorological In-
stitute of Belgium (RMI) as descriptive complexity indicators. For the perceived complexity an image based complexity
estimation mechanism is presented. This image based Densenet Convolutional Neural Network (CNN) uses Street View
images as input and was pretrained on buildings with Bag-of-Words and Structure-from-motion features. The model
calculates an image descriptor allowing comparison of images by calculation of the Euclidean distances between descrip-
tors. SmarterRoutes extends this model by additional hand-labelled rankings of road scene images to predict visual road
complexity. The reuse of an existing pretrained model with an additional ranking mechanism produces results correspond-
ing with subjective assessments of end-users. Finally, the global complexity mechanism combines the aforementioned
sub-mechanisms and produces a service which should facilitate user-centred context-aware navigation by intelligent data
selection and/or omission based on SmarterRoutes’ complexity input.

Keywords: data mining, machine learning, trajectory analysis (dealing with quality and uncertainty), traffic analysis, web
and real-time applications

1. Introduction

As roads get more busy and our living areas more densely 
populated, driving has become challenging, especially in 
cognitively demanding circumstances such as complex junc-
tions or traffic congestion. In those highly critical situa-
tions extra help would be highly beneficial for a road user. 
Advanced Driver Assistance Systems (ADAS) is the col-
lective term to describe these supportive technologies ((EC), 
2016) (Research et al., 2002). Braking support, lane detec-
tion, parking aid and emergency calls are just a handful 
of the numerous efforts that have been made to improve 
driving safety. However, these state-of-the-art assistance 
features are usually designed for the average driver. There 
is little or no input from the user - meaning it is generally 
only relying on sensors of the vehicle to make decisions 
(Hasenjäger and Wersing, 2017). Recently, some major 
contributions towards user-centred data-driven navigation 
assistance have been made. As an example, Okamoto and 
Tsiotras (Okamoto and Tsiotras, 2019) are demonstrating 
that additional data might improve ADAS implementations 
by a data-driven steering wheel torque prediction model. 
Combined with driver behaviour profiling (Ferreira et al., 
2017) such a model could help driving assistance platforms 
better predict and prevent possible crashes based on a driver’s 
steering combined with knowledge about his/her behaviour 
profile.

1.1 Complexity driven route suggestion

Along with the aforementioned assisting technologies an 
optimal route with appropriate, well-timed navigation in-
structions can also contribute to the user-centred context-
aware driving experience. Giannopolous et al. discovered 
for instance that driver age and spatial abilities have a con-
siderable influence on the desired timings of the naviga-
tion instructions (Giannopoulos et al., 2017). Sladewski et 
al. (Sladewski et al., 2017) implemented a route planning 
layout based on weights originating from ranking the road 
turns and their accompanied complexity. This is a great 
example of less apparent characteristics which make nav-
igation challenging. In complex urban situations, drivers 
(and especially older or inexperienced ones (Giannopoulos 
et al., 2017)) might not want the fastest but safest or eas-
iest route. Duchham et al. ((Duckham and Kulik, 2003)) 
implemented such a routing algorithm and favoured routes 
with less complex manoeuvres over the absolute shortest 
path. They also found that an easier route from A to B 
was on average 16% longer than their corresponding short-
est path. Similar approaches are the algorithm of Krisp 
and Keler (Krisp and Keler, 2015), estimating complexity 
based on the number of nearby nodes detected in OSM, and 
the Least Angle Strategy of Hochmair (Hochmair, 2000) 
which prefers roads with the least deviation from the di-
rect target direction at an intersection.
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1.2 User driving preferences

Another contributing factor towards user-centred context-
adaptive navigation is the inclusion of user preferences and
customisation. (Michon and Denis, 2001) performed a user
study to get an idea of how the users would formulate nav-
igation instructions after they were shown the way from a
starting point to a destination in Paris. They found that the
test persons often fell back on landmarks (e.g. objects or
buildings standing out of the environment) when manoeu-
vres became more difficult and complex. Various efforts
have been made to elaborate landmark based orientation in
navigation instructions. Richter and Klippel (Richter and
Klippel, 2005) implemented a solution which started from
basic and abstract routing directions that were then pro-
jected on the actual environmental situation. The finding
that users prefer landmark based navigation when com-
plexity increases can be incorporated in SmarterRoutes’
implementation. The utilisation of meta-information from
geospatial data sources (e.g. does a given intersection have
traffic lights or is there a bus stop nearby) serves as an input
for complexity estimation during navigation.

The overall advancement of technology and the availabil-
ity of extensive (real-time) data introduces the need for
data management as navigation and driving can become
very challenging with an overload of data at inappropriate
moments. Driving and navigating can be sometimes very
challenging. A mixture of bad weather conditions, busy
traffic and complex driving environments combined with
data-overload and very complex driving instructions might
cause dangerous situations for the driver (Rolison et al.,
2018). To prevent such situations from happening, data-
filtering and the provision of appropriate, well-timed in-
structions should be implemented. This paper tries to con-
tribute to the risk-assessment and data-filtering process by
the proposal of a road-scene complexity judgement model
based on the combination of geospatial, sensor and image
data.

1.3 What is complexity?

Before the components of our complexity system are intro-
duced, we should first define what a complex system actu-
ally is. The exact definition of complexity has evolved over
the years. In the early days, the Latin word “complexus”
literally meant “weaving things together” (Schlindwein and
Ison, 2004). Ottino (Ottino, 2003) came with a definition
for complex systems. They concluded that a system can
be considered complex if a lot of individual components
and interactions exist. As a lot of things happen simulta-
neously and are dependent of each other, it is acceptable
to consider the road network and the accompanied traffic
as a complex system. The different types of roads with all
its road furniture and the interactions of drivers with each
other and with the road infrastructure are perfect examples
of elements which define the overall complexity of a road
scene. Schlindwein and Ison concluded that a major def-
inition of complexity can be best described by classifying
the possible assessments of them in one of the two sub-
categories; descriptive or perceived complexity. The for-
mer, is the category in which quantitative measurements of
complexity can be placed. In our road based context we
can sum up a number of examples such as the number of
cars on the road, the distance between them or the num-
ber of speed bumps. The latter, perceived complexity, is

Figure 1. A visualisation of context aware data display
whilst driving. Show less information when their is con-
gestion.

the group which tries to quantify the perception of an ob-
server. In our situation, this can be the thoughts of a driver
whilst riding a certain road segment (e.g. this looks dan-
gerous or this sector is badly illuminated or I can barely
see the road).

A distinct complexity indication might on its turn serve
as ultimate input for a smart navigation implementation.
In the following subsections we discus the aforemetioned
building blocks of the complexity mechanism in further de-
tail.

2. The complexity mechanism

2.1 Level-of-detail driven data management

As already discussed in the introduction, proper route plan-
ning should pay attention to the potential factors which
are making driving hard. A context-aware path-calculation
implementation should provide the best (or least worst)
possible route by consideration of both the available en-
vironmental circumstances and the user itself. The next
and important step towards user-centred navigation is the
provision of clear instructions tailored to a specific user
and/or use case. In an user-centred navigation implemen-
tation we have to make the following consideration: “how
much and at which moment do users want to see the rel-
evant (navigation) information?”. The hereby proposed
complexity model will contribute towards a concise an-
swer to this question by the provision of road-scene com-
plexity gauge. Several studies have been performed around
this exact topic. Giannopoulos et al. (Giannopoulos et al.,
2017) performed a user study to get an insight in when and
how much a user needed navigation instructions to perform
an A to B routing task. The participants could ask for the
same audio navigation instruction multiple times for the
same manoeuvre but this only happened in 14.4% of the
situations. They also found that timing of the instructions
was highly dependant of a number of environmental prop-
erties such as direct visibility of the decision point (DP),
the length of the segment (between DPs) and the type of in-
tersection of the DP. This useful insight is elaborated in the
proposed complexity model by geospatial and image based
analysis. Furthermore, they also investigated the user char-
acteristics which were related to the actual timing of the in-
structions and concluded that age of the driver and general
sense of direction are the most correlated with appropriate
instruction timing. Every individual behaves in a different
way and has his own preferences. One driver might be ob-
sessed by data and would love to know every single detail
whilst driving. Another one might want the least infor-
mation possible and have a navigational device which pro-
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vides just enough information to conveniently orient them-
selves. In a user-centred navigational approach this choice
should really be up to the users themselves. A parametric
dashboard architecture which offers a predefined collec-
tion of data fields and services based on the type of user
might be a good design to fulfil this important aspect of
user-driven navigation.

Nonetheless, Cellario (Cellario, 2001) pointed out that a
huge amount of data might cause information overload dur-
ing driving. Research performed by Morris et al. (Morris et
al., 2015) showed that distractions of as little as 2 seconds
considerably increase the risk for an accident. The US
department of Transportation also made considerable ef-
forts in this field of study. They concluded that information
should be checked against the following criteria: informa-
tion type; priority and complexity; trip status and driving
load; and the driver profile (Hulse et al., 1998). Although
the latter two criteria are undeniably very important to the
safety of an intelligent navigation system we will mainly
focus on the former aspect of data filtering. The added
dimension of data and distraction management introduces
a supplementary use case for the context-aware complex-
ity indication mechanism. In the following subsections,
a mechanism to estimate environmental road scene com-
plexity based on image, geospatial and sensor data will be
discussed.

2.2 Scoring an environment’s complexity

Generally, humans are capable to visually judge the im-
mediate risk of a certain road situation. This is what we
previously called the perceived complexity of an individ-
ual. In sheer contrast, traffic accident studies show that
the major part of incidents are caused by human mistakes
(Rolison et al., 2018). A human’s judgement is the result
of the combination from input of our senses with our gath-
ered background knowledge. The eyes take a snapshot of
the environment and the human brain tries to link this snap-
shot with previously encountered situations. Background
knowledge about the type of environment ultimately pro-
vides us with an idea of the road scene’s complexity. To
mimic this natural behaviour the proposed complexity mea-
surement mechanism uses transfer learning on Convolu-
tional Neural Networks (CNNs) with human judgements
of visually perceived risk of a road scene as training labels.
A Convolutional Neural Network is a deep neural network
which is especially suitable for image input. Image input
is processed by a variety of matrix operations which are
reducing the individual pixels to a feature matrix. The ex-
act feature matrix is the result of training the model with
training data for a specific use case (e.g. road type classifi-
cation). For readers who want a more in-depth introduction
into convolutional neural networks we refer to the work of
O’Shea and Nash (O’Shea and Nash, 2015).

Visual complexity score: Convolutional Neural Net Im-
age Retrieval (CIR) As mentioned, increasing road com-
plexity clearly imposes the need for context-adaptive nav-
igation and driving assistance. The first component of the
complexity estimation mechanism is computer-aided vi-
sual road scene complexity estimation. In the next para-
graph we will introduce such an implementation which
emulates the human’s visual road scene perception. The
suggested implementation uses the proposed framework of
Radenović et al. (Radenović et al., 2018). Their solution

excels in finding similarity among images and achieves
this by careful selection of descriptor features. Positive
matches were detected in large image data sets based on a
combination of Bag-of-Words (BoW) and Structure-from-
Motion techniques. As negative matches the closest neg-
ative image and its k-nearest neighbours are selected (a
match is marked as negative by additional 3D reconstruc-
tion methods verifying that the match isn’t just showing
the object from another point of view). When the tuples
(image, best positive match, closest negative matches) are
calculated for a training dataset a Convolutional Neural
Network can be fine-tuned to minimise positive matching
distances and maximising the negative matching ones (see
Fig. 2 for the schematic overview of this approach). Fig. 3
illustrates that the model is very capable at finding a visu-
ally very similar image in its collection of labelled training
data.

Figure 2. Radenović et al. image matching architecture

Figure 3. Best match provided by the model providing it
with ”Original image” as an input.

The CNN model as a street scene matcher The model
of Radenović et al. was initially introduced to find sim-
ilar buildings or monuments. We experimented with this
model for road scene complexity classification purposes
as road scenes have comparable characteristics. Figure 3
shows the output of a visual similarity query and the CNN
is returning a road scene that looks similar to our original
image. The performance of the model is only as good as
the training data it is provided with. The first step to verify
the feasibility of the proposed model for road classification
consisted of an initial selection of training images. The im-
ages all came from Google Street View and are provided
with a score from 0 to 10 based on perceived complexity.
Currently, the collection of training data originates from 2
different sources. A large part of these initial images (42)
were obtained from the Streetscape experiment (Naik et
al., 2014). In this study head to head comparisons between
2 street scenes were performed. During this experiment
volunteers were asked to select the pictures that look most
safe, wealthy, lively, beautiful or depressing. For our pur-
pose we weighed and normalised the individual compar-
isons and favoured the ’safety, wealthy and lively’ compar-
isons of the set of available decision variables. The other
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images (18) were hand labelled. Rankings accompanied
by their image paths are stored in a separate csv file. Like-
wise, image descriptors are calculated using the pretrained
model of Radenović et al. (Radenović et al., 2018) and
are stored in .h5 files (Hierarchical Data Format). Road
scene complexity can now be estimated by calculating the
descriptor of a new/unseen street scene image and by com-
paring them with the descriptors in the indexed h5 file con-
sisting of the training images. Image similarity is defined
as the euclidean distance between their descriptors. Eq.1
and Eq. 2 calculate the best and second best match for an
image query (IQ). When the best (Ibest) and the second
best match (I2ndbest) is known a weighted final score (Eq.
3) can be determined. The exact weights are currently set
to 3

4 and 1
4 . Further and thorough evaluation is needed to

fine-tune and verify the values for the weights.

Ibest = min
I0...In

[dist(Ii, IQ)] (1)

I2ndbest = min
I0...In\Ibest

[dist(Ii, IQ)] (2)

W = w1 ∗Wbest + w2 ∗W2ndbest (3)

With:
Ii training image i (i ≤ 0 < n))
IQ query image
dist(Ii, Q) euclidean distance between descriptors

training image i and query image
W total and final weight of IQ
w1 weight of best match
w2 weight of second best match
Wbest score of best matching training image

(from CSV)
W2ndbest score of second best matching training

image (from csv)

Figure 4. Step by step schematic overview of the image
based complexity ranking mechanism

Model and ranking mechanism evaluation In the pre-
vious paragraph the image-based ranking model was intro-
duced. The approach looks promising as the real power
lies in the flexibility, relative simplicity and ease of use.
The biggest contributor to its overall ranking potential is
the adoption of a well established pretrained model tailored
for recognising similarity in 3D objects (buildings or road
scenes). When this is combined with an additional rank-
ing (and lookup) mechanism, a basic but functional rank-
ing mechanism is obtained. When we would have opted
to retrain an entire model for the image-based complexity
judgement task we should need a lot of labelled training

data (M. Foody et al., 1995), which unfortunately isn’t yet
the case, but is an aspect we are actively working on. The
re-use of an existing CNN-based similarity model, com-
bined with an initial collection of road scene images which
are accompanied by human labelled rankings, already pro-
vides us with a basic, but usable model. Initial user tests
show that generated complexity scores are corresponding
with subjective evaluations of the testers.

Additionally, to verify this first iteration of the CNN based
complexity gauging mechanism, 20 hand labelled images
were used to validate the model. As previously discussed,
the model used to determine perceived complexity is look-
ing for similarity in the images to find the best match in the
dataset (images with calculated CNN descriptors and the
human-labelled complexity). The bigger and more univer-
sal this dataset is, the bigger the chance of finding a road
scene with similarly looking characteristics (e.g. bridges,
zebra crossings). With this consideration in mind, the ini-
tial model’s achieved mean square error (MSE) of 2.92 is
a promising starting point for the following versions with
more and extended geographically covering human-labelled
street scene images.

Geospatial and sensor complexity analysis of a road
scene The CNN-based model and ranking system em-
ulates the visually perceived road scene safety. As men-
tioned in the introduction, human perceived complexity
isn’t always an accurate gauge for the actual complexity.
The big number of road accidents which are occurring due
to human error are a perfect example for this fact. When
we want to obtain a complexity model that minimises the
potential danger of human (mis)perception, we should also
include descriptive complexity indicators into our complex-
ity mechanism.

Figure 5. A visual representation of the complexity esti-
mation model with all of its sub ranking mechanisms

Figure 5 summarises the various suggested components
of a versatile complexity indication architecture with the
aim to facilitate LoD-aware navigation. The image based
complexity can be considered as a baseline for complex-
ity. This is a discrete indicator of how safe or dangerous
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the road situation is perceived by a road user. In a next
step, the initial value can be checked against or further fine-
tuned by the descriptive complexity indicators of the archi-
tecture. Currently we have implemented geospatial analy-
sis (Fig. 5) using OpenStreetMap as its data source. This
mechanism is providing us with meta-information about
the road which the driver is currently using. Table 1 shows
the geospatial information which is obtained for our com-
plexity mechanism by an example. The properties are al-
lowing categorisation of the environment based on land-
use (e.g. grassland, woodland and urban) and road type
(e.g. highway, primary, secondary) during the fusioning
and reasoning stage (Fig. 5) . The other currently imple-
mented descriptive measures of complexity are traffic and
weather analysis.

This modular approach facilitates additional inclusion of
sensor data to adapt the complexity scoring to a specific use
case based on additional and carefully selected environ-
mental and peripheral input (e.g. extra inclusion of turn-
ing angle or driver stress level). Furthermore, as more and
more people tend to carry a smartphone, active research
around additional useful sensor data should definitely be
considered. An example of a possibly useful sensor is the
accelerometer which is standard equipment for most ev-
eryday smartphones. Logging acceleration and monitoring
changes over time might provide valuable contributions to-
wards overall complexity estimation. Zang et al. (Zang et
al., 2018) proposed a method for road surface roughness
estimation using a mobile application. Their work is ba-
sically showing the possibility to get road surface insights
from smartphone acceleration sensors. For certain trans-
port modes (e.g. motor riders or cyclists) accelerometer
data might also provide an approximate leaning angle dur-
ing turns (Lingesan and Rajesh, 2018). When both surface
knowledge and tilt angles are combined a general idea of
how “sporty” a bike rider is taking turns and provide them
with a warning if a certain leaning angle was too extreme
for a given type of road.
Another interesting input source might be real-time im-
agery coming from action or dash cameras. This bypasses
the use of Street View based road scene images, which
aren’t always optimally representing the current road sit-
uation (e.g. different time of the day, road works). Ad-
ditionally, together with the guaranty of real-time footage
which can be used for more accurate image based street
scene complexity, more profound insights in the environ-
ment might be obtained as well. Some examples of possi-
ble insights are weather situation (clouded or clear sky or
even temperature (Chu et al., 2018)) or image based road
surface categorisation (Slavkovikj et al., 2014).

2.3 The influence of user characteristics on complex-
ity

The previously introduced complexity mechanisms were
all based on the road environment and its related context.
The characteristics of the end-user are another equally im-
portant factor which should also be considered in a context-
aware LoD-management platform. As mentioned in the
introduction of this paper (section 1), several interesting
studies around a user’s navigational behaviour do exist.
Two important user specific characteristics are their age
and their general sense of direction. Combination of both
characteristics can result in various driver profiles which

can be linked to specific rules on how they behave at a cer-
tain complexity level. For instance, when a driver is pro-
filed as “a novice driver with mediocre geospatial capabili-
ties, these rules might result in the omission of certain data
in favour of more thorough route guidance during complex
driving situations.

Finally, a global complexity indication mechanism can be
compiled using the various sources of geospatial and sen-
sor data combined with knowledge about the type of driver.
With the help of this indication, a data-driven navigation
service should now be able to make a well considered de-
cision about which information to omit/display and how
exactly to display the necessary information, based on the
complexity ranking and the provided user preferences.

3. Evaluation

In the previous section the various components of the com-
plexity framework have been discussed in detail. A follow-
ing step consisted of testing the introduced mechanisms
against some real-life scenarios to check if the indicators
are corresponding with these scenarios.

Figure 6. R1, Antwerp, relatively quiet traffic, image based
complexity 1.5/10 (i.e. low complexity)

Figure 7. R1, Antwerp, congested traffic, image based
complexity 8.75/10 (i.e. high complexity)

Figures 6 and 7 are illustrating the impact of descriptive
complexity indicators on the perceived (image based) com-
plexity. Both shots come from Mapilary, which is a crowd-
sourced geotagging image service (similar to Google Street
View). Both shots were taken on the same geographical
spot but under different traffic circumstances. Light condi-
tions were roughly the same. This demonstrates that per-
ceived image based complexity is highly time- and context-
related and that our perceived complexity model is corre-
sponding to a human’s perception. This further fortifies
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Image based complexity 5.25(/10)
General OSM analysis

Closest OSM way id 130795868
Road type tertiary
Road surface unknown
Land Use unknown
Maximum speed unknown

Closest intersection
Bearing angle 263
Distance from location 0.07km
Latitude 51.1740211
Longitude 3.9377042
n-type 3

Traffic info
distance from location 2.77km
Latitude 51.19891697
Longitude 3.93597038
Road description Complex nr 12 Moerbeke
Road type driving lane
Speed difference 19
Speed cars 72
Road occupation 1

Weather info
Precipitation 0.00002m
Wind angle 63
Wind direction North
Wind speed 3.20m/s
Temperature 9.95◦C

Table 1. Complexity analysis results for rural town centre
of Fig. 8

our decision to split complexity in a perceived and descrip-
tive sub-component. The time- and context-dependency on
perceived complexity could be bypassed by the use of ac-
tion or dash cams as they would provide the model with
a real time snapshot of the environment. As an additional
bonus, they also avoid the process of downloading and pro-
cessing Street View footage. Experiments have shown that
this exact process takes the longest time in the entire com-
plexity ranking mechanism (5.42 seconds were needed to
download and process the Street View image, the entire
complexity indication process took 9.75 seconds).

Figure 8. Complexity analysis for a rural town centre,
showing the various mechanism parameters in table 1. Fur-
ther reasoning about the parameters indicate average com-
plexity

The data selection and processing of potential complex-

ity analysis mechanisms was realised in correspondence
with SmarterRoutes’ general concepts and principles about
modularity. Extra components can be added as needed and
the subsequent reasoning and unification of the selected
mechanisms ideally happen on a user(group) level.

To demonstrate and verify the perceived complexity CNN
model, we implemented a basic set of descriptive complex-
ity parameters to suit a broad group of users’ needs. Cur-
rently, geospatial analysis is performed by OSM way tag
analysis supplying maximum speed, land use, road type
and basic intersection information. Sensor based analytics
are obtained from the Alaro weather model from the Bel-
gian Meteorological Institute (RMI) 1 providing the com-
plexity mechanism with precipitation, temperature and wind
condition. Traffic information was obtained by periodi-
cally polling the data resulting from the governmental ini-
tiative “Meten in Vlaanderen (MIV)” 2 which analyses the
traffic statuses of Belgium’s major roads and is providing
the model with real-time vehicle speeds, road occupation
and speed difference for a certain location.

As a showcase for the various mechanisms we show the
analysis for a road scene of a Flemish village centre. Fig-
ure 8 shows the full complexity analysis for the centre of
Moerbeke-Waas, Flanders. As indicated the perceived im-
age based complexity mechanism indicates average com-
plexity (5.25/10). As shown under “Closest intersection”
(Table 1) and also visible on the map in Figure 8 a 3-way
intersection is nearing. This fact should also be considered
in the overall complexity estimation. Traffic info is irrel-
evant for this exact location as the closest measurement
point is more than 2km away. Additionally, the geospatial
(tertiary road) and sensor based analysis (i.e. good weather
and relatively low wind speed) indicate that the road scene
circumstances are relatively safe. The final recommenda-
tion coming out of the model would be “average complex-
ity, intersection coming up”.

As mentioned the image based complexity mechanism was
using a minimal amount of training data and the initial
model is giving a MSE of 2.92 on a verification set of 20
images. We are currently gathering more training data, to
get a bigger and geographically broader dataset. For this
additional data gathering a number of A to B routes were
calculated and Street View footage was obtained for these
routes. A total of 6 routes (see Fig. 9), spread across the
Flanders region (Belgium), resulted in a total of 2245 im-
ages which will be hand labelled by test users using an
in-house web-based labelling tool (see Fig. 10).

Nevertheless, as the model might become more accurate by
providing it with more training data, perceived complexity
will still have several shortcomings. First, an important
consideration is the fact that Street View images are just
snapshots of the environment. This footage can be out-
dated or even unavailable for certain regions. Another im-
portant consideration is that complexity can change through-
out the day. For instance, a highway will look more com-
plex when a lot of vehicles are on the Street View image
then it would do when traffic was entirely quiet.

1https://opendata.meteo.be/geonetwork/srv/eng/

catalog.search#/metadata/RMI_DATASET_ALARO
2https://opendata.vlaanderen.be/dataset/

7a4c24dc-d3db-460a-b73b-cf748ecb25dc
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Figure 9. Geographical spread of the routes used to gather
additional training data.

Figure 10. The user-friendly web interface to conveniently
label the route’s (see Fig. 9) Street View images.

4. Conclusion

The introduced SmarterRoutes complexity mechanism was
implemented with end-user customisation and simplicity
in mind. The human’s perceived complexity is replicated
by a CNN-model with an additional ranking mechanism.
In addition, geospatial and sensor based analysis provide
descriptive complexity measurements which are fine-tuning
or correcting the user perception about road complexity.
Basic and straightforward fusion and reasoning has already
been experimented with (e.g. primary roads are more com-
plex as secondary or traffic congestion means high com-
plexity), but additional, future work should be done to stream-
line the process.

A big consideration is the fact that the whole mechanism
is centred around data. The mechanism’s performance is
highly dependant on the quality of the supplied data. As
shown in Table 1, land use, road surface or maximum speed
are often unknown as users haven’t yet contributed this in-
formation to the OSM database (see https://taginfo.
openstreetmap.org for an idea of the coverage for cer-
tain OSM tags). Additional geospatial datasets or data aug-
mentation methods could be used to get more coverage (for
instance, the work of Slavkovikj et al. (Slavkovikj et al.,
2014) and could be considered in future iterations of the
geospatial complexity mechanism).

Additionally, as we try to focus the whole complexity level-
of-detail aware navigation and data-management around
an individual the need for user studies arise. As previ-
ously mentioned, the suggested image based complexity
indication component would certainly benefit from addi-
tional hand-labelled Street View images. When more la-
belled test and training Street View data is used in our
model, the MSE for the visual complexity model could
be further reduced. Another direct benefit of user stud-
ies would be the impact on the perceived complexity by

using different image sources. It would be very interest-
ing to present the user the same road scene both as a Street
View capture and a action cam image. This would poten-
tially give further insights in the influence of weather situa-
tion, season, time of day or other nuances on the perceived
complexity. Combined with knowledge of traffic (and ac-
cidents) experts we could possibly gain also more insights
under which circumstances drivers are more likely to miss-
estimate complexity.
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