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Abstract:
Location Based Services (LBS) are definitely very helpful for people that interact within an unfamiliar environment, but
also for those that already possess a certain level of familiarity with it. In order to avoid overwhelming familiar users
with unnecessary information, the level of details offered by the LBS shall be adapted to the level of familiarity with the
environment: providing more details to unfamiliar users and a lighter amount of information (that would be superfluous, if
not even misleading) to the users that are more familiar with the current environment. Currently, the information exchange
between the service and its users is not taking into account familiarity. Within this work, we investigate the potential of
machine learning for a binary classification of environment familiarity (i.e., familiar vs unfamiliar) with the surrounding
environment. For this purpose, a 3D virtual environment based on a part of Vienna, Austria was designed using datasets
from the municipal government. During a navigation experiment with 22 participants we collected ground truth data in
order to train four machine learning algorithms. The captured data included motion and orientation of the users as well
as visual interaction with the surrounding buildings during navigation. This work demonstrates the potential of machine
learning for predicting the state of familiarity as an enabling step for the implementation of LBS better tailored to the user.
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1. Introduction

Location Based Services (LBS) are influencing the way
people interact with each other as well as with their sur-
rounding environment and there are still several challenges
that have to be overcome (Huang et al., 2018). For in-
stance, knowing if a human is familiar with her surround-
ing environment is a very relevant topic as it enables to
improve the quality of the provided service. Since it is
practically impossible to ask every user explicitly about her
familiarity with her surrounding environment, it is impor-
tant to be able to predict it based on objectively measurable
factors in an implicit manner. Geospatial data, such as user
location and orientation, can be easily captured through
mobile devices such as smart phones which are used for
LBS. Rising computational and data transfer capabilities,
especially in hand-held devices, enable to process data in
real-time in the background without disturbing the users.
The information generated can then be used by an LBS on
the device in order to obtain a more accurate understanding
of the user and her intentions, improving the quality of the
provided service. For instance, a navigation system could
adapt the visualizations of the route or the flow of infor-
mation according to whether the user is familiar with the
surroundings or not.

In this work, it is analyzed how the state of familiarity
can be predicted based on the motion of a user as well
as based on the interaction with the surrounding environ-
ment. For this purpose, a 3D-model was created using data
from the regional government of Vienna, Austria, obtained
through their geodataviewer1, and the software CityEngine

1https://www.wien.gv.at/ma41datenviewer/public/

from Esri. The CityEngine software was utilized to create
the shapes of the buildings according to the actual ground
shape and height. As no facade graphics of the actual
buildings were available, textures provided by CityEngine
were used to produce a realistic appearance. This model
was integrated into the Unity game engine in order to en-
able navigation. A user experiment with 22 participants
was performed in order to collect ground truth data which
were used to train four machine learning algorithms.

This work demonstrates the potential of familiarity pre-
diction based on machine learning even with basic mea-
sures. The paper is structured as follows: we continue with
related work and introduce the applied methodology fol-
lowed by the results. Next, the findings are discussed and
we close with a conclusion and objectives for future work.

2. Related work

Virtual environments have often been employed for em-
pirical experiments for many different types of research
questions. Experiments in laboratory environments are of-
ten favored due to the experimental control that can be
achieved. Furthermore, several studies, e.g., (Anderson
and Bushman, 1997, Kuliga et al., 2015), have demon-
strated that laboratory studies externalize quite well. In
a related experiment Chao Li (Li, 2006) implemented an
immersive urban virtual reality environment to analyze be-
havior and information preferences of participants. The ex-
periment setup was similar to the setup used in our work.
He created a virtual environment that was based on the data
of a real location, in this case a traditional market town in
the United Kingdom. In his study, participants also used
a joystick to move within the virtual environment. They
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were required to wear stereo glasses and had a PDA (Per-
sonal Digital Assistant) for accessing routing information.
None of the participants was familiar with the test envi-
ronment, nor did they get the chance to explore it before-
hand. During the experiment, the time, location and ro-
tation of each participant was automatically tracked. This
specific experiment was focusing on the behavior of the
participants and therefore the use of the PDA device was
recorded. The collected datasets were later integrated to
form a common time series over all different data types.
This time series was then processed to gain information
about how often, when and where the participants used the
PDA and which information type they accessed. The users
were additionally classified based on what kind of infor-
mation they mostly accessed on the PDA into three groups:
The first was dominated by the use of text route informa-
tion, the second by low use of map information and the
third by high use of map information. For each of the three
groups a density map of the PDA usage was created. Con-
trary to our work presented in this paper no machine learn-
ing algorithms were applied to classify the participants of
the experiment. Instead Ward’s method, an algorithm for
hierarchical cluster analysis, was applied to find clusters in
the data. Nevertheless, this work served as a basis for our
experimental setup.
Machine learning has widely been utilized in the domain of
Geographic Information Science (GIScience), highlighting
the promising potential for finding relationships between
spatial and non-spatial data. For instance, in (Yan et al.,
2018) they classified types of places by using a convolu-
tional neural network(CNN) using geospatial as well as
auxiliary data to perform this classification task. They con-
cluded that CNNs hold great potential for performing this
type of prediction task. In (Mc Cutchan and Giannopou-
los, 2018) another type of machine learning algorithm was
utilized, namely association analysis. They analyzed the
connection of different types of land covers and the geo-
objects they maintain. In (Stenneth et al., 2011), the pos-
sibilities of detecting the mode of transportation of a hu-
man using mobile phones and GIS information was in-
vestigated. They collected GPS traces of six transporta-
tion modes (stationary, walking, bike, bus, car and above
ground train) over a time span of three weeks. After pre-
processing the GPS data, it was fused with three differ-
ent GIS datasets (real time bus locations, rail lines and bus
stops). Based on this, they trained five different machine
learning algorithms (Naive Bayes, Bayesian Network, De-
cision Trees, Random Forest and Multilayer Perceptron)
and compared the precision and recall accuracy. Random
Forest on average reached 93.70% precision accuracy and
93.80% recall accuracy, which was the best result of all
five algorithms, therefore the Random Forest model was
used as the final classification model. Based on that, they
used the model on three slightly different datasets: once
with and once without transportation network data as well
as once only with the top five classification features. They
found, that there was a significant change in accuracy de-
pending on whether transportation network data was used
or not (75% versus 94%). Pruning all but the top five fea-
tures (which were in order of importance: average speed,
average rail line closeness, average acceleration, average
bus closeness and candidate bus closeness) hardly changed
the accuracies (93%) and therefore they concluded that those
are the most important features. Taking a closer look at

the feature ranking, they argued that their model could be
easily adapted for various regions of the world especially
since widely available network data such as rail line close-
ness is higher ranked (number 2 of 8) and therefore more
important than less available data like bus stop closeness
(number 7 of 8). Moreover, they proposed to prune the net-
work data according to the zip-code of the users location
and found that this is a very good method to reduce compu-
tation time, especially for real-time, mobile systems. Con-
trary to the work in this paper they also deployed the de-
veloped system to the real world, with new test individuals
under everyday use. The results achieved showed that the
proposed system works under everyday conditions and is
also very robust to traffic condition changes. These works
served as an inspiration and guide for our selected meth-
ods.

Next to the LBS application, the prediction or detection of
familiarity with the surrounding environment is also very
important when evaluating LBS. Very often, different types
of LBS systems are evaluated through a user study. Envi-
ronmental familiarity can strongly bias the results of such
experiments. For instance, when evaluating a navigation
assistance system (Gartner et al., 2011, Kerber et al., 2014,
Giannopoulos et al., 2015, Schirmer et al., 2015) if the
users in one of the conditions are familiar with the envi-
ronment (without explicitly stating it), they would have to
rely less on the assistance, thus introducing a bias in the
captured data that can alter the final results of the experi-
ment.

3. Methodology

Within this section the creation of the 3D model, the setup
of the experiment as well as the final processing and ma-
chine learning of the data is described. Navigation was
enabled in the 3D model in order to perform the experi-
ments. While the experiments were carried out, user be-
havior data was collected. This data was then processed
and used to determine if the corresponding participant is
familiar or not with the surrounding environment.

3.1 The 3D-Model

The regional government of Vienna, Austria provided a
collection of data about the city. It ranges from spatial
data over administrative data to demographic data. For
the purpose of this paper, the multi-purpose area map, the
road graphs as well as the official trees register were uti-
lized. Next, the data were preprocessed and filtered. All
the datasets used were imported into CityEngine and rule-
based modeling and Computer Generated Architecture (CGA)
rules were applied to calculate the heights of the buildings.
This was done by calculating the distance between the low-
est and the highest point of each building. Furthermore, the
pre-existing Building Mass Texturizer rule file by Esri was
used to apply randomly generated textures to the facades of
the buildings. This method achieves a realistic look, how-
ever does not resemble the facades of the actual buildings
(see Figure 1).

Within the modeled area, a suitable test route was chosen to
accommodate several requirements: (1) It should contain
sections with a high as well as sections with a low inter-
section density, (2) different types of intersections (T- and

2https://www.esri.com/en-us/arcgis/products/esri-cityengine
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Figure 1. Overview of the 3D model scenery in City En-
gine2. The ground is overlaid with a satellite image.

Y-Intersections and Crossroads (Fogliaroni et al., 2018))
should be present, and (3) there should be enough unique,
distinguishable facades which can act as landmarks. Land-
marks were used to define a route, however, not all of the
selected or placed landmarks were later used in the se-
lected route. Some of the landmarks acted as decoys in or-
der to prevent participants from learning to detect the dis-
tinguishable textures. Finally, the models developed with
the CityEngine software were exported using the Autodesk
FBX format. Furthermore, a python script was used in or-
der to export the IDs of the multi-purpose area map in order
to ensure that each building will be uniquely identifiable
during the post-processing.

Before the experiment started, the 3D-model was imported
into the Unity game engine (see figure 2). During the im-
port, a C# script was applied in order to ensure that ev-
ery Unity GameObject will be connected with the correct
multi-purpose area map ID.

The “Rigidbody First Person Controller” (avatar) was im-
ported from the Standard Assets provided by Unity and
added in the scene editor at the position the user should
start with the experiment. In order to ultimately be able to
control the avatar, a joystick (Logitech Extreme 3D Pro)
was configured as an input device. The speed settings
of the avatar were set during run-time via a menu before
the start of the actual virtual environment scene. For this
purpose two C# scripts were implemented. One script for
changing the values from the start menu and one script to
store the values and pass them through from the start menu
to the actual scene. A further script was added as a compo-
nent to the avatar GameObject in order to read the position
and orientation of the avatar. This script applied ray tracing
in order to find the IDs of all the buildings the user could
possibly see from her current location. The script collected
this data once every frame during the entire run-time of the
experiment and stored the resulting strings into a comma-
separated values file. This collected data was later used as
input to train a machine learning algorithm.

Figure 2. The 3D city model in Unity. The overview at
the top is very similar to the CityEngine view and at the
bottom, the first-person view is illustrated, which the users
saw during the experiment. The participants were able to
navigate through this environment using a joystick.

In order to capture the environment of the avatar, ray trac-
ing was used. An essential aspect regarding ray tracing
is the interval in which the rays are cast. In this experi-
ment a step size of 15◦ was used (see figure 3). Setting
this interval too high, i.e. higher degree between the ray
casts, would increase the likelihood of missing important
objects. However, setting the interval to low would in-
crease the computational effort.

Additionally a start and pause menu was developed for
convenience. During the experiment this menu was used
to change some preferences without having to open the ed-
itor. It also gives the participant time to prepare before the
virtual environment was shown and the first audio instruc-
tion were played back. After this setup, all the software
preparation was done and the virtual environment was able
to be experienced while the actions were recorded.

3.2 Experiment
A between subjects design was employed for this experi-
ment. Each participant from both groups had to navigate
along the the same route in the same virtual environment.
The only difference between the two groups was familiar-
ity with the experimental area.

3.2.1 Participants

In total 22 participants took part in the experiment. They
were split into two equal sized groups: one group was fa-
miliar with the experiment area (F) and one group was
unfamiliar (U). The distinction between two groups was
favoured over a more graded scheme, such as one includ-
ing a ”slightly familiar” class, as it would be almost im-
possible to gather a clean ground truth for it. The F group
consisted of 8 males and 3 females. They had a mean age
of 29.18 years with a standard deviation of 11.24. Their
mean score on the Santa Barbara Sense-of-Direction Scale
(Hegarty et al., 2002) was 4.47 points with a standard devi-
ation of 1.33, the mean gaming experience was 4.27 points
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Figure 3. Top-down view of the rays cast by the avatar with
a step size of 15◦.

with a standard deviation of 2.28 and the mean joystick
experience was 5.45 points with a standard deviation of
1.80. The U group consisted of 6 males and 5 females.
They had a mean age of 23.72 years with a standard de-
viation of 5.15. Their mean score on the Santa Barbara
Sense-of-Direction Scale was 5.38 with a standard devia-
tion of 0.73, the mean gaming experience was 3.72 with
a standard deviation of 2.45 and the mean joystick expe-
rience was 5.59 with a standard deviation of 1.70. These
descriptive statistics differ for each group, however, not in
a significant way. Therefore no significant impact on the
comparability of both groups can be expected.

3.2.2 Setup

The experiments took place in a laboratory environment.
The virtual environment was displayed on a projection wall
(see figure 4). A joystick was placed on a table in front
of the projection. The projector was 5.5m away from the
screen and the table was set at the fixed distance of 2.5m
from the screen. This setup was never changed throughout
the entire experiment.

3.2.3 Procedure

All participants, from both groups, received the same in-
formation sheet and questionnaires. Next to demographic
information, all participants were asked to fill in the Santa
Barbara Sense-of-Direction Scale, a self-assessment of spa-
tial abilities, as well as answer questions regarding their
gaming and joystick experience. All questionnaires are
based on a 7-Likert scale (1-7), with higher numbers in-
dicating higher experience.

The participants in the F group got some time to accustom
to the surroundings and look at the generated textures be-
fore the actual experiment started. It was assumed that if
a user was already familiar with the geometry, the gener-
ated textures for the facades could be learned easily with-
out losing the level of familiarity with the surrounding en-
vironment. During this activity the participants were free
to explore the environment until they confirmed that they

were familiar with it. In the event that a test person missed
an important part of the model, the experimenter would
suggest to further investigate the missed area and gave di-
rections to it.
The actual experiment started after the exploration phase
for the F group and immediately for the U group. First,
the experimenter shortly recapped what was written on the
information sheet to make sure that the participants under-
stood the task. All participants were told to look at the
middle of the screen and to look around the virtual envi-
ronment only with the joystick controlled avatar and not
by looking to the sides of the screen. Although the ex-
perimenter also reminded the participants during the ex-
periment, it was noted that many participants kept looking
around from time to time. This problem will be discussed
later in detail. Next, the participants were told to follow the
audio instructions played back by the experimenter. The
instructions always consisted of a landmark and a turning
direction, for example “Turn right at the hotel”. In the
event that a test person overlooked a landmark, the supervi-
sor would tell him to go back and have a closer look around
the last intersections. As soon as it was obvious that the
correct decision was made by the participant the next in-
struction was played back. After the experimenter closed
the program, the collected data was transferred, together
with the filled in questionnaires, to a participant specific
folder.

Figure 4. A picture taken during the experiment. The par-
ticipant can view the virtual environment on the screen and
navigates through it with a joystick.

3.3 Data Processing
After the experiments were finished, features were extracted
from the raw data and formatted in sparse vectors. The ex-
tracted features can be divided into two general groups:
data related directly to the avatar and data related to the
surroundings of the avatar. Features directly related to the
avatar were further divided into two groups: position and
orientation related features. Positional features are time,
traveled distance, as well as the number and duration of
stops. Orientation features are the rotation measured in
degrees as well as the number of stops during the rota-
tion. For each feature, descriptive statistics were com-
puted, such as the maximum, minimum, mean, median
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and variance. The second group, the features concerning
the surrounding environment of the avatar, consisted of the
identifiers (IDs) of the buildings that were in sight (see later
in this section for details on what is considered to be in
sight) of the avatar.
In order to be able to compute the descriptive statistics for
the features, the data was aggregated over sections of the
route the avatar traveled. Thus, measurements which were
collected along a section were then used to compute the
descriptive statistics of the features. Three different defini-
tions of section where defined: (1) Original section, which
is bounded within two consecutive intersections, (2) Com-
bination A which is the same as the original definition but
ignoring extremely close intersections, and (3) Combina-
tion B defines a section as the street segment between two
intersections where a direction change occurred.
The algorithm we implemented computes the number of
moves and rotations for every section. A move or a rota-
tion is a single continuous motion, as soon as this motion is
interrupted, a stop is introduced. This is done by checking
if the position in this frame equals the position in the next.
However, this does not apply in practice, as the data is cap-
tured with a higher frequency (same as the projected frame
rate) than the motion of the avatar describes a change of
location. Thus, as the data is captured and the avatar is in
motion, it introduces artificial stops as no motion is rec-
ognized due to the higher frequency data is captured with.
To overcome this problem, the position in one frame was
tested against the position three frames later. If the coor-
dinates did not differ, then the continuous motion was in-
terrupted and a stop was introduced. Instead of calculating
duration and distance of the motion from the first and the
last frame, they were calculated once every three-frames
and added up, in order to reduce potential noise. Rotations
were processed in the same manner.
Once rotation as well as position related features were com-
puted for each section, they were aggregated using descrip-
tive statistics, such as minimum, maximum, average, me-
dian, standard deviation, and put into the yet empty feature
vector for this section. Next, the IDs of all the visible ob-
jects found by ray casting were processed. They were then
separated into three different groups: (1) IDs of objects
which are within a full circle around the avatar. (2) Ob-
jects in the field of view (ranging from -30◦ to 30◦), and
(3) objects directly in front of the avatar. Afterwards, the
number of unique IDs as well as the number of frames in
which every unique ID was visible were computed for each
of the three ranges and statistical values were derived from
the resulting datasets. These computed values were then
added to the feature vector of the corresponding section.
The entire feature extraction process resulted in three ta-
bles per user: one for the original sections, one for combi-
nation A and one for combination B. Lastly, the tables for
each combination were merged into one table for all users.
This merged table was passed to RapidMiner, which was
used in order to apply machine learning. There, a sequence
of operations was carried out (see figure 5). First, the data
was preprocessed and subsequently carried out a parame-
ter optimization for finding the best parameter for the used
machine learning procedure . The preprocessing operator
labeled the data and deleted those features which exhibited
a significant correlation. The optimization aims at detect-
ing the best parameters for machine learning by applying

a grid based search strategy. Thus, it carries out the ma-
chine learning procedure multiple times and finds the set
of parameters which score the best prediction results. Ad-
ditionally, we performed a 10-fold cross validation. There-
fore, 10% of the table was used as test data and 90% of the
table as training data. A 10-fold cross validation repeats
the training and testing procedure 10 times. Each time, a
different subset (10 % of the data) was used as test data.
This yields ten different accuracy assessments for each of
the ten iterations, which consist of a confusion matrix and
an overall accuracy. In order to get an overall accuracy as-
sessment, values from each iteration were averaged. This
entire process was repeated four times. Each time a dif-
ferent machine learning algorithm was used, namely: Lo-
gistic Regression (Kleinbaum et al., 2002), Support Vec-
tor Machine (Hsu and Lin, 2002), Gradient Boosted Trees
(Elith et al., 2008) and Random Forest (Breiman, 2001).
Logistic regression uses a fitted logistic function to pre-
dict the class of the highest likelihood. SVM introduces
support vectors into the feature space in order to create a
hyper plane which aims at optimally separating the classes
in the feature space. Gradient Boosted Trees based predic-
tion aims at improving decision tree predictors gradually
in a steepest descent manner. The random forest classifier
introduces a set of decision trees which exhibit a minimal
correlation to each other for predicting.

Figure 5. The overall machine learning process. The thin-
ner arrows indicate, that the following part is inside the
operator.
a: The outermost process, the data is retrieved, prepro-
cessed and optimized.
b: Inside the optimization, the data is used the cross vali-
dation.
c: Inside the cross validation the training and testing is per-
formed.

4. Results

The four machine learning algorithms were evaluated by
confusion matrices and overall accuracy. The overall accu-
racy was additionally expressed by a percentage describing
the fluctuation of the overall accuracy exhibited during the
10-fold cross validation. The values of the confusion ma-
trix and the overall accuracy correspond to the average of
every iteration of the 10-fold cross validation. Tables 1 to 4
show the prediction results for each machine learning algo-
rithm using the original set of sections, Tables 5 to 8 show
the prediction results using the section combination A, and
Tables 9 to 12 show the prediction results using section
combination B.
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4.1 Results using the original sections

Table 1. Confusion matrix using a 10-fold cross validated
Logistic Regression with the original sections splitting.

overall accuracy: 51.87% +/- 6.73%
true true class

familiar unfamiliar precision
predicted familiar 136 130 51.13%

predicted unfamiliar 51 59 53.64%
class recall 72.73% 31.22%
Kappa(κ) 0.04

Table 2. Confusion matrix using a 10-fold cross validated
Support Vector Machine with the original sections split-
ting.

overall accuracy: 56.97% +/- 6.45%
true true class

familiar unfamiliar precision
predicted familiar 86 61 58.50%

predicted unfamiliar 101 128 55.90%
class recall 45.99% 67.72%
Kappa(κ) 0.14

Table 3. Confusion matrix using a 10-fold cross validated
Gradient Boosted Trees with the original sections splitting.

overall accuracy: 55.08% +/- 6.54%
true true class

familiar unfamiliar precision
predicted familiar 68 50 57.63%

predicted unfamiliar 119 139 53.88%
class recall 36.36% 73.54%
Kappa(κ) 0.10

Table 4. Confusion matrix using a 10-fold cross validated
Random Forest algorithm with the original sections split-
ting.

overall accuracy: 59.82% +/- 9.53%
true true class

familiar unfamiliar precision
predicted familiar 114 78 59.38%

predicted unfamiliar 73 111 60.33%
class recall 60.96% 58.73%
Kappa(κ) 0.20

4.2 Results using the section combination (a)

Table 5. Confusion matrix using a 10-fold cross validated
Logistic Regression with the sections combination (a).

overall accuracy: 55.52% +/- 8.82%
true true class

familiar unfamiliar precision
predicted familiar 101 85 54.30%

predicted unfamiliar 42 58 58.00%
class recall 70.63% 40.56%
Kappa(κ) 0.11

Table 6. Confusion matrix using a 10-fold cross validated
Support Vector Machine with the sections combination (a).

overall accuracy: 54.52% +/- 10.23%
true true class

familiar unfamiliar precision
predicted familiar 78 65 54.55%

predicted unfamiliar 65 78 54.55%
class recall 54.55% 54.55%
Kappa(κ) 0.09

Table 7. Confusion matrix using a 10-fold cross validated
Gradient Boosted Trees with the sections combination (a).

overall accuracy: 52.80% +/- 4.42%
true true class

familiar unfamiliar precision
predicted familiar 110 102 51.89%

predicted unfamiliar 33 41 55.41%
class recall 76.92% 28.67%
Kappa(κ) 0.07

Table 8. Confusion matrix using a 10-fold cross validated
Random Forest algorithm with the sections combination
(a).

overall accuracy: 61.16% +/- 8.06%
true true class

familiar unfamiliar precision
predicted familiar 82 50 62.12%

predicted unfamiliar 61 93 60.39%
class recall 57.34% 65.03%
Kappa(κ) 0.22

4.3 Results using the section combination (b)

Table 9. Confusion matrix using a 10-fold cross validated
Logistic Regression with the section combination (b).

overall accuracy: 53.24% +/- 9.71%
true true class

familiar unfamiliar precision
predicted familiar 59 54 52.21%

predicted unfamiliar 25 31 55.36%
class recall 70.24% 36.47%
Kappa(κ) 0.07

Table 10. Confusion matrix using a 10-fold cross validated
Support Vector Machine with the section combination (b).

overall accuracy: 54.41% +/- 11.56%
true true class

familiar unfamiliar precision
predicted familiar 54 47 53.47%

predicted unfamiliar 30 38 55.88%
class recall 64.29% 44.71%
Kappa(κ) 0.09

Advances in Cartography and GIScience of the International Cartographic Association, 2, 2019. 
15th International Conference on Location Based Services, 11–13 November 2019, Vienna, Austria. This contribution underwent 
double-blind peer review based on the full paper | https://doi.org/10.5194/ica-adv-2-5-2019 | © Authors 2019. CC BY 4.0 License



7 of 8

Table 11. Confusion matrix using a 10-fold cross validated
Gradient Boosted Trees with the section combination (b).

overall accuracy: 61.58% +/- 7.36%
true true class

familiar unfamiliar precision
predicted familiar 53 34 60.92%

predicted unfamiliar 31 51 62.20%
class recall 63.10% 60.00%
Kappa(κ) 0.23

Table 12. Confusion matrix using a 10-fold cross vali-
dated Random Forest algorithm with the section combi-
nation (b).

overall accuracy: 65.70% +/- 6.22%
true true class

familiar unfamiliar precision
predicted familiar 54 28 65.85%

predicted unfamiliar 30 57 65.52%
class recall 64.29% 67.06%
Kappa(κ) 0.31

5. Discussion

The results revealed that the Random Forest achieved the
best overall accuracy of 65.70% with a variance of 6.22%
when using the data captured at street segments between
direction changes (i.e., combination B). Both classes (fa-
miliar and unfamiliar) got similar class recall (64.29% and
67.06%) and precision (65.85% and 65.52%) values. The
most important attributes for the algorithm were the rota-
tion time and rotation distance. This makes sense, since
people unfamiliar with their surrounding environment will
most likely look around and turn their head more than peo-
ple familiar with their surroundings. Since the walking
speed is relatively slow, the participants had enough time to
look around even without stopping. Therefore the average
moving time did not differ significantly between the two
test groups making this attribute not as important for the
machine learning algorithm. Other important features for
the algorithm were the building IDs that were in the avatars
field of view. This shows whether a participant looked at
a single building for a long time or not. The IDs tended to
be constant in a couple of different scenarios: a participant
kept her head fixed at a building while walking past it, or
while walking in a straight line to the next intersection.

The combination A combined a part in the route where
many short sections were in a row. In this area there was
the special case that the landmark, which is placed at the
end, is already highly visible from the start. It can be as-
sumed that if a participant, familiar or unfamiliar, spot-
ted the landmark in the back she would stop searching
for the landmark and walk straight toward it. Having too
many short sections, the participant would be able to pass
through several sections while walking straight ahead. The
features from these sections would not characterize the be-
havior sufficiently in order to be able to distinguish it. Some
test participants did not exclusively use the joystick con-
trolled avatar to look around but instead turned their head
to the left or the right of the screen. This implies lost in-
formation on the rotation related features.

One of the difficulties encountered before the experiment
started was the separation of participants between famil-
iar and unfamiliar ones. When can someone be considered
familiar with her surrounding environment? In our case,
we explicitly asked the participants about their familiar-
ity with the environment and also let them navigate in the
virtual environment, allowing them to explore it. Although
this is not comparable to someone who has lived for several
years in the area and actually interacted with many of the
buildings several times. Nevertheless, we considered the
training session as an adequate approximation. Further-
more, next to the familiarity level, factors such as spatial
abilities, gaming and joystick experience are also very im-
portant. Although the reported differences between the two
groups were not significantly different, still, there might be
an impact which needs to be further investigated.

A problem encountered during the experiment was related
to the tracked behavioral data. Although the experimenter
instructed every participant to keep their head steady to-
wards the middle of the screen many participants occasion-
ally moved their head to the sides, changing their field of
view. This change should actually be reflected in the col-
lected data as a joystick turn. In an extreme case, the data
may show that the participant was walking in a straight
line, looking straight ahead while in reality she was con-
stantly moving her head searching for the landmark. There
are several possible solutions: One solution would be to
limit the field of view. This would at the same time make
the whole experiment less immersive and would not rep-
resent the way humans observe and interact with the real
environment. Another approach could be to make the im-
age blurry, except of the center, e.g., introduce a spotlight
effect. This way it would be gradually harder to read a text
written on a facade but the participant would still be able
to notice that there is something that could be interesting.
A different solution would be to measure the actions of
the participant in the real world. This could be done by
recording the gaze (Kiefer et al., 2017) or the head move-
ments via an external device like an eye tracker or motion
trackers. Depending on the actual method, this could lead
to very precise data on where the participant focused her
gaze during the experiment, regardless whether the avatar
is turned in this direction or not. Further research has to be
conducted to find practical solutions to this problem.

6. Conclusion and Outlook

In this work, a virtual environment was created in order
to let 22 participants navigate in it. Their movement was
recorded and gathered in order to extract features. These
features were than used by four different machine learning
algorithms, to determine if the participants are familiar, or
unfamiliar with their environment.

In conclusion it can be said that through the presented user
experiment we accomplished to collect data that enables
a machine learning algorithm to predict to a certain de-
gree the local familiarity of a human user. Furthermore,
the analysis showed that the rotation data was the most im-
portant feature.

The results show that using a random forest classifier, it
is possible to predict with an overall accuracy of 65.7%.
Therefore, this machine learning algorithm is the most promis-
ing candidate when pursuing further research on this work.
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One should look into using real facade textures for the vir-
tual environment to make the experience for the partici-
pants even more immersive. It should also be considered
to use head or eye tracking devices for capturing the ac-
tions of the participants while controlling the avatar. Be-
cause these improvements would closer resemble the real
world as well as provide data about previously not cap-
tured actions they are likely to increase the overall accu-
racy. Additionally, instead of separating features into ro-
tations and linear movements, an integrated representation
can be used for future work. Considering the setup of the
3D-virtual environment, CityEngine provided an easy to
use interface which enables one to create a 3D model of an
urban environment from existing ground plots and heights.
CityEngine also provides capabilities to extend the model
if more data becomes available at a later point.

Clearly, additional improvements can be made to the pre-
sented approach. However, the results presented in this
work look promising and illustrate that it holds potential
for further research.
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