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Abstract: Location Referencing is a well-known methodology to transfer geoobjects from one digital map to another 
and typically used to share traffic information. Here, especially the dynamic methods play a major role, as they are 
developed to transfer Location References between different maps in such cases where no common databases and/or 
common structures are available. The key issue in dynamic Location Referencing is to find the correct geoobject in the 
target map which corresponds to the geoobject in the source map. So far, in nearly all methods a deterministic 
algorithm is implemented to perform this. Given the fact that geodata as well as the matching procedure for geodata has 
some uncertainty, it is obvious to research uncertainty-based algorithms. This paper presents a probability-based 
decision system by formulating the decision algorithm/functions and evaluating them. The evaluation is done with real 
traffic information and benchmarked against a deterministic decision system.  
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1. Introduction 
For location-based services (LBS), digital maps are of 
crucial importance and are often provided in different 
versions. In the context of the transfer of geoobjects 
(locations) between two digital maps, the term Location 
Reference (LR) was introduced. Following various 
definitions for a Location Reference (Hackeloeer, 2016; 
Lv et al., 2008; Schützle, 2016; Wartenberg, 2007; 
Wevers, 2000), a Location Reference can be understood 
as a map-independent description or identification of a 
digital map based geoobject. The description itself is 
carried out by means of concrete attributes, which are 
derived from the well-known attribute categories for 
general geodata (de Lange, 2013; Devogele et al., 1996; 
Hagedorn, 2007; Lutz et al., 2009; Ma et al., 2010; Streit, 
1996) and can be summarized and grouped as follows 
(Hindenberger and Schwieger, 2018): 

• Geometrical attributes like coordinates/ bearing;  
• Topological attributes like node valence/degree; 
• Syntactical (or toponymical) attributes like the 

name of an object; 
• Semantical (or thematical) attributes like 

physical appearance of an object or hierarchy in 
road network. 

As geoobjects in general (de Lange, 2013), a LR can 
consist in planar case of points, lines and areas (Schützle, 
2016) and cover typically use cases such as traffic or road 
information (Hackeloeer, 2016; Wevers and Hendriks, 
2006). The umbrella term Location Referencing refers to 
a summary of all methods and techniques for transferring 
a LR (Wartenberg 2007; Schützle 2016) and represents a 

concrete variant of general georeferencing (Hackeloeer, 
2016). The specific method is typically called Location 
Referencing Method (LRM) and used in a Location 
Referencing System (LRS) (Kenley and Harfield, 2018). 
The process (Location Referencing Process) within the 
Location Referencing System is one-dimensional without 
any iteration and typically the sender (source) and 
receiver (target) systems are distributed and separated. 
Svensk and Wikström (2013) and Schützle (2016) split 
the process in three steps: firstly with encoding the LR for 
a given geoobject on the side of the sender (i.e. the LR is 
generated in a defined interface format), secondly the 
transfer itself between sender and receiver system, and 
thirdly the decoding on the receiver side which means 
primarily performing the algorithm to find and detect the 
correct or the most likely geoobject for the transferred LR 
in the receiver system. 

 

Figure 1. Process of Location Referencing (according to Svensk 
and Wikström (2013)) 

In the past, nearly all methods used deterministic 
algorithms to achieve this object. Generally, geodata have 
some uncertainty (Goodchild, 1992; Glemser, 2000). 
Additionally,  some uncertainty is given by  
linking/integrating geodata from different sources 
(Gahegan and Ehlers, 2000; Gösseln and Sester, 2004; 

Advances in Cartography and GIScience of the International Cartographic Association, 2, 2019. 
15th International Conference on Location Based Services, 11–13 November 2019, Vienna, Austria. This contribution underwent 
double-blind peer review based on the full paper | https://doi.org/10.5194/ica-adv-2-6-2019 | © Authors 2019. CC BY 4.0 License



2 of 8  

 

Samal et al., 2004; Stigmar, 2005). Hence, the use of a 
method to handle such uncertainty by concepts like 
probability theory is appropriate. However, such a 
method has just been used in one known LRM (TPEG2-
ULR with Markov Chain published in Schramm et al. 
(2012)), so this makes it interesting to do some additional 
research and investigations. 
Based on previous works published in Hindenberger and 
Schwieger (2018), this paper presents a probability-based 
decision system for LRS and is structured as follows: In 
Section 2 the mathematical principles in the context of 
the approach are given. Sections 3 and 4 describe the 
specific decision functions and underlying probability 
distributions. This is followed by the experimental 
evaluations in Section 5 and the paper closes with a 
conclusion given in Section 6. 

2. Mathematical principles 
In this approach, the values are seen as random variables. 
So, in this section the relevant mathematical principles 
and methods are introduced in the following and used 
later in Sections 3 and 4. 

2.1 Probability theory 
Probability is a measure of the occurrence of a random 
variable (Eckey et al., 2005). Here, the random variables 
are differentiated by discrete or continuous (Bosch, 1986) 
as shown in Table 1. 
Table 1. Discrete and continuous random variables  

 Discrete Continuous 
Type Countable Not countable 
Definition Probability mass 

function, Cumulative 
distribution function 

Probability density 
function, Cumulative 
distribution function 

Examples Binomial 
distribution, 
Poisson distribution 

Gaussian 
distribution, 
Exponential 
distribution 

In this paper, the exponential and binomial distributions 
are relevant in particular (compare Section 4.2). 
In specific, the exponential distribution is defined as 
(Bronstein et al., 1993): 
 

𝑓𝑓(𝑥𝑥) = �0,          𝑥𝑥 < 0
𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆  𝑥𝑥 ≥ 0

  , (1) 

 
where 𝜆𝜆 = 1

𝜇𝜇
, 𝜇𝜇 = 𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒. 

Furthermore, the binomial distribution is given by 
(Bronstein et al., 1993): 
 

𝐵𝐵𝑝𝑝𝑛𝑛(𝑘𝑘) =  �𝑛𝑛𝑘𝑘�𝑒𝑒
𝑘𝑘(1 − 𝑒𝑒)𝑛𝑛−𝑘𝑘  , (2) 

 
where p = probability of single event, 
 n = number of trials, 
 k = number of successes in n trials. 

In case of unknown distribution type, the distribution and 
the underlying parameters need to be estimated (Table 2) 
by a random sample and finally checked by a “goodness 
of fit” test (e.g. Kolmogoroff-Smirnoff-Test) to identify 
the probability distribution.  
Table 2. Estimation of distribution parameters (according to 
Hartung et al. (2009)) 

Binomial distribution Exponential distribution 

        �̂�𝑒 = 𝑘𝑘
𝑛𝑛

= 𝑓𝑓𝑟𝑟      (3) 

𝑓𝑓𝑟𝑟 = 𝑟𝑟𝑒𝑒𝑣𝑣. 𝑓𝑓𝑟𝑟𝑒𝑒𝑓𝑓𝑣𝑣𝑒𝑒𝑓𝑓𝑒𝑒𝑓𝑓 

      𝜆𝜆 = 1
𝜇𝜇

= 1
𝐸𝐸(𝑋𝑋�)

≈ 1
�̅�𝜆 

=  �̂�𝜆        (4) 

�̅�𝑥 = 𝑚𝑚𝑒𝑒𝑣𝑣𝑓𝑓 𝑜𝑜𝑓𝑓 𝑟𝑟𝑣𝑣𝑓𝑓𝑒𝑒𝑜𝑜𝑚𝑚 𝑠𝑠𝑣𝑣𝑚𝑚𝑒𝑒𝑣𝑣𝑒𝑒 

By a Kolmogoroff-Smirnoff-Test, the test criterion 𝐷𝐷𝑚𝑚𝑚𝑚𝜆𝜆 
is verified against a critical value 𝐷𝐷1−𝛼𝛼 which needs to be 
reduced in case of parameter estimation. This critical 
value 𝐷𝐷1−𝛼𝛼 is given for an exponential probability 
distribution with estimated parameter 𝜆𝜆 on significance 
level α=0,05 and random sample size n>30 as (Hartung et 
al., 2009): 
 

𝐷𝐷1−∝=0,95 =
1,08
√𝑓𝑓

   , 𝑓𝑓 > 30 (5) 

2.2 Deterministic and probability-based approaches 
Mathematical decision concepts can be distinguished into 
deterministic or uncertainty-based approaches. In the 
deterministic case, the values are uniquely determined, 
whereas in the case of uncertainty, the values base on 
random variables (stochastic, probability-based) or are 
fuzzy (Rommelfanger and Eickemeier, 2002). 
Typically, deterministic values are described by 
analytical functions which are combined to a final power 
(or cost) function. This function will be maximized (or 
minimized) to get the final decision value (Dinkelbach, 
1969). Stochastic values themselves are handled by the 
methods of probability theory. In case of multiple 
individual probabilities these are also combined. Here, it 
has be differentiated between stochastically independent 
and stochastically dependent probabilities. For 
independent probabilities, single probabilities 𝑒𝑒1, … , 𝑒𝑒𝑛𝑛 
are multiplied (Equation 6) whereas for dependent 
probabilities, the „multiplication rule for conditional 
probabilities“ needs to be used (Hartung et al., 2009):  
 

𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑒𝑒1 ∗ … ∗  𝑒𝑒𝑛𝑛 (6) 
 
Similar to the deterministic approach, the probability-
based approach is an optimization task which means the 
maximum (or minimum) value will be used to make the 
final decision (Dinkelbach, 1969; Kromphardt et al., 
1962). 

3. Deterministic and probability-based decision 
functions 

3.1 Definition of criteria 
Similarity measurements are well-known and widely used 
measurements to integrate and match geoobjects, i.e. 
identify the same geoobject represented in different 
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geospatial data sources, (Bruns and Egenhofer, 1996; 
Gösseln and Sester, 2004; Li and Goodchild, 2012; 
Rodriguez and Egenhofer, 2004; Volz and Walter, 2004) 
and play a major role in many applications such as spatial 
decision systems etc. (Schwering, 2008). 
Following Hindenberger and Schwieger (2018), Table 3 
shows the selected criteria (similarity measurements) 
with the focus on linear geoobjects (e.g. roads) described 
by the topological elements of nodes and edges. 
Table 3. Criteria for probability-based decision system  

Geometrical 
• node distances between 

two nodes 
• bearing differences 

between edges (line 
segments) 

Topological 
• Comparison of node 

valences/degrees 

Syntactical 
• Comparison of street 

names 

Semantical 
• Comparison of 

Functional Road Class 
(FRC) 

• Comparison of Form of 
Way (FOW)  

• Comparison of speed 
categories  

• Comparison of one-
way-attribute 

As pointed out by Hindenberger and Schwieger (2018), 
the criteria listed result from the outcome of former 
works in this context, in which the criteria have been used 
and/or named as relevant (e.g. Schützle, 2016; 
Wartenberg, 2007). 

3.2 Decision functions 
In this paper, two groups of decision functions have been 
specified and formulated: 

• Probability-based main function with full set of 
criteria as primary methodological outcome; 

• Probability-based and deterministic functions for 
comparative calculation. 

The latter is given by the fact, that absolute performance 
strongly depends on the aggregation of the specific test 
data and the definition of the performance indicator. So, it 
is necessary to perform such a comparative calculation by 
using a well-known deterministic approach. For this, the 
OpenLR-decision function (OpenLR demo 
implementation, described in Schützle (2016)) has been 
selected and adapted accordingly. In this, a reduced set of 
criteria by node distances, bearing differences and the 
comparison of FRC and FOW is used.  

3.2.1 Probability-based functions 
Using the full set of criteria, the probability-based main 
function is defined by Equation 7 following Equation 6 
due to the stochastically independence of the criteria: 
 

𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑒𝑒𝑛𝑛𝑛𝑛 ∗  𝑒𝑒𝑏𝑏𝑛𝑛 ∗  𝑒𝑒𝑣𝑣𝑚𝑚𝑣𝑣 ∗  𝑒𝑒𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠  
                            ∗  𝑒𝑒𝑓𝑓𝑟𝑟𝑓𝑓 ∗  𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓 ∗  𝑒𝑒𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛  ∗  𝑒𝑒𝑓𝑓𝑛𝑛𝑟𝑟𝑓𝑓𝑚𝑚𝑜𝑜   , (7) 

where  
Table 4. Variable names for probability-based decision function 

𝑒𝑒𝑛𝑛𝑛𝑛= node distance, 
𝑒𝑒𝑏𝑏𝑛𝑛= bearing difference,  
𝑒𝑒𝑣𝑣𝑚𝑚𝑣𝑣= node valences, 
𝑒𝑒𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠= street name, 

𝑒𝑒𝑓𝑓𝑟𝑟𝑓𝑓= functional road class, 
𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓= form of way, 
𝑒𝑒𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑛𝑛= speed category, 
𝑒𝑒𝑓𝑓𝑛𝑛𝑟𝑟𝑓𝑓𝑚𝑚𝑜𝑜: one-way-attribute. 

For the comparative calculation and the reduced set of 
criteria, the probability-based decision function is adapted 
accordingly by Equation 8: 
 

𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟′ =  𝑒𝑒𝑛𝑛𝑛𝑛 ∗  𝑒𝑒𝑏𝑏𝑛𝑛 ∗  𝑒𝑒𝑓𝑓𝑟𝑟𝑓𝑓 ∗  𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓 (8) 
 
The individual probability values are given by the 
probability distributions in Section 4.2. 
3.2.2 Deterministic function  
The OpenLR deterministic approach is specified as a 
deterministic power function given by Equation 9: 
 
𝑅𝑅𝑂𝑂𝑝𝑝𝑟𝑟𝑛𝑛𝑂𝑂𝑂𝑂 = 𝑅𝑅𝑛𝑛𝑓𝑓𝑛𝑛𝑟𝑟 ∗  𝑓𝑓𝑛𝑛 + � 𝑅𝑅𝑠𝑠 +  𝑅𝑅𝑓𝑓𝑟𝑟𝑓𝑓 +  𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓� ∗  𝑓𝑓𝑟𝑟  , (9) 
 
where  𝑅𝑅𝑛𝑛𝑓𝑓𝑛𝑛𝑟𝑟 = Rating factor for node distance, 
 𝑅𝑅𝑠𝑠 = Rating factor for bearing differences, 
 𝑅𝑅𝑓𝑓𝑟𝑟𝑓𝑓 = Rating factor for FRC, 
 𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓 = Rating factor for FOW,   
 𝑓𝑓𝑛𝑛 , 𝑓𝑓𝑟𝑟= weighting factors (default = 3). 
 
In detail, 𝑅𝑅𝑛𝑛𝑓𝑓𝑛𝑛𝑟𝑟 is calculated by Equation 10 for node 
distance 𝑒𝑒𝑛𝑛𝑓𝑓𝑛𝑛𝑟𝑟  (Euclidian distance, detailed in 
Hindenberger and Schwieger (2018)): 
 
𝑅𝑅𝑛𝑛𝑓𝑓𝑛𝑛𝑟𝑟 =  max (0,𝑒𝑒𝑚𝑚𝑚𝑚𝜆𝜆 −  𝑒𝑒𝑛𝑛𝑓𝑓𝑛𝑛𝑟𝑟) ,   𝑒𝑒𝑚𝑚𝑚𝑚𝜆𝜆 =  100𝑚𝑚 (10) 
 
𝑅𝑅𝑠𝑠   is specified by rating Table 5 using the bearing 
difference 𝑒𝑒𝑏𝑏𝑟𝑟𝑚𝑚𝑟𝑟  (minimum absolute difference between 
the azimuths of the two paired edges, Hindenberger and 
Schwieger (2018)). 
Table 5. Rating factor 𝑅𝑅𝑠𝑠 

𝑒𝑒𝑏𝑏𝑟𝑟𝑚𝑚𝑟𝑟 𝑅𝑅𝑠𝑠 
< 6° 100 

< 12° 50 
< 18° 25 
≥ 18° 0 

For the rating factors 𝑅𝑅𝑓𝑓𝑟𝑟𝑓𝑓 and  𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓, discrete rating 
tables have been specified in an analogous way.  

4. Statistical evaluations and estimated 
probability distributions 

4.1 Additional classifications 
As specified in Hindenberger and Schwieger (2018), 
some additional classifications are needed to set up the 
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random samples in an appropriate way as well as the 
characteristics of the probability distributions. 
The first classification reflects the fact whether the 
criteria are considered to be map supplier independent or 
not, resulting in a mixed or dependent (specific) random 
sample. Secondly by the characteristics of the data 
(random variables, compare Section 2.1), i.e. if they are 
continuous or discrete, which defines the type of 
probability distribution. Both additional classifications 
are shown in Table 6. 
Table 6. Additional classifications due to the probability-based 
approach 

 sample supplier 
dependent / mixed 

continuous / discrete 
distribution 

Geometrical mixed continuous 
Topological mixed discrete 
Syntactical mixed discrete 
Semantical dependent discrete 

4.2 Estimation of specific probability distributions 
In Hindenberger and Schwieger (2018), statistical 
distributions for the above-mentioned geometrical and 
topological criteria were estimated and published. For the 
sake of completeness and to present the overall picture, 
the evaluations and estimations made in the named paper 
have been picked up (Sections 4.2.2 and 4.2.3) and for 
the additional criteria, the probability distributions have 
been additionally estimated and presented here. Here, the 
focus is on urban and urban hinterland scenarios, so the 
estimated probability distributions are valid for these 
scenarios. 

4.2.1 Overview of used database and test area 
Referring to Hindenberger and Schwieger (2018), the 
following databases have been used to create set of 
random samples: 

• TomTom Multinet (TT) for the area of Utrecht, 
version 2008 (TomTom B.V. 2013); 

• OpenData City of Cologne, version summer 
2016 (Stadt Köln); 

• OpenData road network federal state NRW, 
version summer 2016 (GovData); 

• OpenData City of Rostock, version summer 
2016 (Hansestadt Rostock); 

• OpenStreetMap, current version by date of 
generating the layer (i.e. summer 2016); 

• TomTom Multinet and HERE map for the 
federal state of Baden-Württemberg provided by 
the map supplier. 

4.2.2 Geometrical evaluations 
Here, a mixed random sample (100 corresponding edges) 
consisting of several supplier combinations with the same 
size for every subset has been aggregated (Table 7). This 
gives a sample size of 𝑓𝑓𝑛𝑛𝑓𝑓𝑛𝑛𝑟𝑟 = 200 for node distances 
and 𝑓𝑓𝑏𝑏𝑟𝑟𝑚𝑚𝑟𝑟 = 100 for bearing differences. As detailed by 
the authors, node distances have been calculated by 
Euclidian distance and bearing differences by the 

minimum absolute difference between the azimuths of the 
two paired edges.  
Table 7. Random samples for geometrical evaluations 

• TT (Utrecht) with OSM 
(Utrecht) 

• OpenData (Cologne) 
with OSM (Cologne) 

• OpenData (NRW) with 
OSM (corresp. region) 

• OpenData (Rostock) 
with OSM (Rostock) 

As a result (Figure 2 and Figure 3), both random samples 
are exponentially distributed with given 𝜆𝜆 (estimated by 
Equation 4) to be tested by the Kolmogoroff-Smirnoff-
Test (KST).  
Processing the KST using Equation 5 gives the results 
(11) for node distances and (12) for bearing differences. 
Both test criteria 𝐷𝐷𝑚𝑚𝑚𝑚𝜆𝜆  fall below the critical value 𝐷𝐷1−𝛼𝛼, 
i.e. the hypothesis that the random samples are 
exponentially distributed with given 𝜆𝜆 could not be 
declined: 
 

𝐷𝐷𝑚𝑚𝑚𝑚𝜆𝜆 = 0,072 <  𝐷𝐷1−∝=0,95 =
1,08
√200

=  0,0763 (11) 

𝐷𝐷𝑚𝑚𝑚𝑚𝜆𝜆 = 0,102 <  𝐷𝐷1−∝=0,95 =
1,08
√100

=  0,108 (12) 

 

 

Figure 2. Exp. probability density function for node distances 

 
Figure 3. Exp. probability density function for bearing 
differences 

4.2.3 Topological evaluations 
Again, a mixed random sample with the same size for 
every subset has been set up to analyse the distribution of 
the node valence within a given node pair (Table 8). 
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Here, the mixed random sample needs to be splitted due 
to the available nodes with necessary node degrees. 
Table 8. Random samples for topological evaluations 

Node valence = 1,3 and 4 Node valence = 5 and 6 
• TT (Utrecht) with OSM 

(Utrecht) 
• OpenData (Cologne) 

with OSM (Cologne) 
• OpenData (Rostock) 

with OSM (Rostock) 
• OSM (Stuttgart) with 

HERE (Stuttgart) 
• HERE (Stuttgart) with 

TT (Stuttgart) 

• TT (Stuttgart) with 
OSM (Stuttgart) 

• OSM (Stuttgart) with 
HERE (Stuttgart) 

• OSM (Stuttgart) with 
TT (Stuttgart) 

• HERE (Stuttgart) with 
TT (Stuttgart) 

• TT (Stuttgart) with 
HERE (Stuttgart) 

From practical point of view, for a given node valence  
𝑁𝑁𝑁𝑁𝐺𝐺 in the sender system the corresponding node valence  
𝑁𝑁𝑁𝑁𝐶𝐶  in a receiver system has been evaluated. This gives 
the results in Table 9. 
Table 9. Relative frequencies of node valences 

  𝑁𝑁𝑁𝑁𝐶𝐶 Sample 
Size 

  1 3 4 5 6 

𝑁𝑁𝑁𝑁𝐺𝐺 

1 0,97 0,03 0,00 0,00 0,00 75  

3 0,00 0,84 0,16 0,00 0,00 75  

4 0,00 0,17 0,83 0,00 0,00 75  

5 0,00 0,07 0,64 0,29 0,00 75  

6 0,00 0,10 0,54 0,22 0,14 50  

Table 9 shows a nearly 1:1 matching for the common 
node valences 1,3 and 4. In contrast, the node valences 5 
and 6 are more distributed. 
As explained in detail by Hindenberger and Schwieger 
(2018), the general multinomial distribution for all 
corresponding values and a specific given value can be 
simplified by a binomial distribution. So, the probability 
�̂�𝑒𝐺𝐺 ,𝐶𝐶 for a specific combination “given node valence – 
corresponding node valence” can be derived from the 
relative frequency 𝑓𝑓𝑟𝑟 by Equation 3. 
4.2.4 Syntactical evaluations 
As written in Section 3.1 this is realized as a comparison 
of street names which means two street names are 
compared to each other to find out how similar they are. 
To carry out such string comparation, various methods 
and concepts for similarity measurements can be applied. 
Good overviews are given in Naumann (2013) or Deza 
and Deza (2016). Based on this fact, a preliminary 
analysis has been performed to find out the best-fitting 
similarity measure. The analysis itself has been done on 
normalized strings, i.e. a given string will be transferred 
to a string with just upper cases, no street numbers, no 
space, no special (country specific) character, no 
abbreviations, no other symbols etc. This helps to 
minimize user-specific differences just by using different 
ways of naming a street or typical spelling/typing errors. 
As an outcome, the well-known and use case independent 

Levenshtein distance in the variant of Damerau-
Levenshtein as a normalized similarity measurement 
score (Equation 13 following Serva and Petroni, 2008; 
Naumann, 2013) has been chosen as a compromise. 
Basically, Levenshtein distance calculates the minimal 
number of operations which are necessary to transform 
one string into another. Every operation (insert, delete, 
edit) is calculated with cost = 1 which results in a sum of 
costs (Levenshtein, 1966; Zhang, 2009). In the variant of 
Damerau-Levenshtein distance, transpositions are 
calculated with cost = 1 (Damerau, 1964): 
 

𝑠𝑠𝑠𝑠𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑂𝑂𝑟𝑟𝑣𝑣 = 1 −  
𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝐷𝐷𝑚𝑚𝑚𝑚𝑂𝑂𝑟𝑟𝑣𝑣

max(𝑠𝑠𝑒𝑒𝑟𝑟𝑠𝑠𝑓𝑓𝑠𝑠1 , 𝑠𝑠𝑒𝑒𝑟𝑟𝑠𝑠𝑓𝑓𝑠𝑠2)  ,  (13) 

 
where 𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝐷𝐷𝑚𝑚𝑚𝑚𝑂𝑂𝑟𝑟𝑣𝑣  = number of operations (edit distance), 
 max(𝑠𝑠𝑒𝑒𝑟𝑟𝑠𝑠𝑓𝑓𝑠𝑠1, 𝑠𝑠𝑒𝑒𝑟𝑟𝑠𝑠𝑓𝑓𝑠𝑠2) = max. length of strings. 
 
As a result, the similarity measurements are given by a 
rel. frequency  of 𝑓𝑓𝑟𝑟 = 0,95 for 𝑠𝑠𝑠𝑠𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑂𝑂𝑟𝑟𝑣𝑣 = 100% and 
consequentially 𝑓𝑓𝑟𝑟 = 0,05 for 𝑠𝑠𝑠𝑠𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑂𝑂𝑟𝑟𝑣𝑣 < 100%  
(based on the same mixed random example aggregated 
for the geometrical evaluations). Inserted in Equation 3, 
these frequencies also represent the probabilities. 
4.2.5 Semantical evaluations 
In Section 4.1 the semantical criteria have been 
introduced as supplier-dependent which means generally 
that for every combination of map suppliers, the 
distributions have to be worked out separately. Here it 
must be noted that this mapping is unidirectional, since 
the in Section 3.1 specified underlying semantical 
attributes are usually supplier-specific due to availability, 
definition, scalability, actuality and interpretation. In this 
paper, it has been focused on the combination TomTom 
with HERE, for which the distributions have been 
analysed. Like in Section 4.2.3 for topological 
evaluations, the distributions have been analysed that way 
that specific criteria in one system have been given and 
the corresponding criteria in the other system have been 
taken. The sample size has been selected to n=30 since by 
experience even a smaller sample size shows sufficient 
results. 
As an example, the results are shown for Functional 
Road Class (FRC) in Table 10 and Table 11. This 
attribute is defined in TomTom directly as Functional 
Road Class (FRC) in the interval [0;8] with decreasing 
importance. In HERE there is a similar attribute named 
Functional Class (FC) and defined in the interval [1;5] 
with decreasing importance, too. 
As Table 10 and Table 11 show, the general mapping 
distribution is different: In some cases (e.g. TomTom to 
HERE for 1 to 2), there is nearly a 1:1 matching whereas 
in other cases (e.g. HERE to TomTom for 3 to 1..5), the 
results are splitted. 
The other named semantical criteria have been evaluated 
in an analogous way (Hindenberger, 2017). 
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Table 10. Rel. Frequencies of distribution FRC to FC 

  HERE  

  1 2 3 4 5 

TomTom  

0 0,97 0,03 0 0 0 

1 0 0,97 0,03 0 0 

2 0 0,07 0,9 0,03 0 

3 0 0 0,73 0,27 0 

4 0 0 0,47 0,43 0,1 

5 0 0,03 0,1 0,47 0,4 

6 0 0 0 0,07 0,93 

7 0 0 0 0,03 0,97 

8 0 0 0 0 1 

Table 11. Rel. Frequencies of distribution FC to FRC 

  TomTom  

  0 1 2 3 4 5 6 7 8 

HERE  

1 0,8 0,17 0 0,03 0 0 0 0 0 

2 0 0,83 0,07 0,07 0 0,03 0 0 0 

3 0 0,03 0,23 0,13 0,54 0,07 0 0 0 

4 0 0 0 0 0,74 0,13 0,13 0 0 

5 0 0 0 0 0 0 0 0,83 0,17 

5. Experimental evaluations and results  

5.1 Decision algorithm and processing 
To evaluate the performance of the probability-based 
approach, a system has been set up that shows the 
absolute performance as well as the relative performance 
compared to a deterministic algorithm implementing the 
decision functions formulated in Section 3.2 using the 
following decision algorithm. 
Table 12. Conceptual decision algorithm 

Step 1 
Creating a set of elements 𝐸𝐸𝑟𝑟𝑟𝑟𝑓𝑓 in the sender 
system: Edges with starting or endpoints 
representing Location Reference. 

Step 2 
For every element in 𝐸𝐸𝑟𝑟𝑟𝑟𝑓𝑓: collecting an 
individual set of potential candidates 𝐸𝐸𝑓𝑓𝑚𝑚𝑛𝑛𝑛𝑛  in 
the receiver system. 

Step 3 
For every element of this individual set of 
potential candidates 𝐸𝐸𝑓𝑓𝑚𝑚𝑛𝑛𝑛𝑛  : Processing the 
specific decision function. 

Step 4 

Candidate with the maximum value in this 
individual set 𝐸𝐸𝑓𝑓𝑚𝑚𝑛𝑛𝑛𝑛  : Assumed to be the 
corresponding element in 𝐸𝐸𝑓𝑓𝑚𝑚𝑛𝑛𝑛𝑛  to the specific 
element in 𝐸𝐸𝑟𝑟𝑟𝑟𝑓𝑓. 

The basic test concept consists of selecting an edge in the 
sender system, specifying a reference edge (reflecting to 
the same object) in the target system and performing the 
decoding process in the receiver system. The list of edges 
to be transferred results from real live traffic situations in 
Stuttgart provided by GoogleMaps. 
In practice, the starting or ending edge for the given 
traffic situation has been identified in the sender system 

and the corresponding edge (reference edge) in the 
receiver system has been matched manually. This has 
been done for the constellation of transferring TomTom to 
HERE as well as HERE to TomTom which results in two 
lists (test data) covering the same real live traffic 
situations. This makes it possible to compare the 
performance depending on the mapping direction. 
As a performance indicator, the hit rate ℎ𝑟𝑟 - calculating 
the ratio of the number of correctly identified edges 𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟  
to all transferred edges 𝑓𝑓𝑚𝑚𝑣𝑣𝑣𝑣  – have been used (Demir, 
2002): 

ℎ𝑟𝑟 =  
𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟
𝑓𝑓𝑚𝑚𝑣𝑣𝑣𝑣

   (14) 

 
In this context, correctly identified means that the 
identified edge in the receiver system is the same as the 
specified reference edge. 
For processing the evaluations, a module in the QGIS (v 
2.18.13) processing toolbox has been developed which 
automatically performs the decoding process.  

5.2 Results 
As mentioned before, two different criteria have been 
evaluated. First, absolute performance by probability-
based main function using full set of criteria as defined in 
Equation 7. Processing this for a list of 𝑓𝑓𝑚𝑚𝑣𝑣𝑣𝑣 = 100 edges, 
the hit rates in Table 13 have been obtained. 
Table 13. Hit rates for probability-based main function 

 TomTom to 
HERE 

HERE to 
TomTom 

Correctly identified 89 90 
Not identified 11 10 

Hit rate 89 % 90 % 

Secondly, the relative performance by the functions for 
comparative calculation (Equations 8 and 9) using the 
reduced set of criteria. With the same list of edges as 
above, the hit rates are as follows (Table 14 and Table 
15). 
Table 14. Hit rates for comparative calculation (TomTom to 
HERE) 

 TomTom to HERE 
 Probability-

based Deterministic 

Correctly identified 87 76 
Not identified 13 24 

Hit rate 87 % 76 % 
Table 15. Hit rates for comparative calculation (HERE to 
TomTom) 

 HERE to TomTom 
 Probability-

based Deterministic 

Correctly identified 88 75 
Not identified 12 25 

Hit rate 88 % 75 % 
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5.3 Analyse and assessment of the results 
Generally, the overall picture of the results shows an 
adequate performance of the probability-based approach 
and gives sufficient hit rates for practical use. 
For the probability-based main function, hit rates up to 90 
% have been obtained with no significant difference in 
performance between the two mapping directions. In 
detail, the list of correctly identified edges slightly differs 
among both directions. Here, there is no specific criteria 
in case of no hits, but usually the combination of different 
criteria. 
In case of the relative performance, the probability-based 
algorithm gives a significant higher performance, in 
average 12 percentage points, compared to the 
deterministic. Again, there is no specific criteria for the 
slight differences for both directions. It is noticeable here, 
that the hit rate between the full set of criteria (Table 13) 
and the reduced one (Table 14 and Table 15) is not that 
significant. As more in-depth analyses have shown, this is 
due to the predominant impact of the geometrical criteria 
(covered by both sets) on the overall result. From this it 
can be concluded that no significant improvement may be 
expected by adding further criteria. 

6. Conclusion 
In this paper, a probability-based approach for a decision 
algorithm within a Location Referencing Method has 
been published. After giving an overview of terms and 
methodology in the context of Location Referencing and 
some mathematical principles, the specific decision 
functions used by the algorithm have been formulated 
and defined. In this, a set of criteria based on similarity 
measurements for geometrical, topological, syntactical 
and semantical attributes has been specified and the 
corresponding probability distributions have been 
estimated. The performance of these functions has been 
validated and confirmed by experimental evaluations 
based on real live traffic situations covering two mapping 
directions. As a conclusion, the probability-based 
algorithm delivers an adequate performance (up to 90% 
hit rate) and thus offers an improvement of 12 percentage 
points compared to the previous deterministic algorithms. 
Since this has been conducted for urban and urban 
hinterland scenarios, the number of uses cases could be 
extended by other scenarios like rural or motorway. 
Furthermore, elaborating another approaches to handle 
uncertainty are beneficial, so a fuzzy-based approach is in 
process. 
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