
 

Finite mixtures of normal distributions in the study of the 
error in altimetry 
José Rodríguez-Avia,*, Francisco Javier Ariza-Lópezb 

a Department of Statistics and Operational Research, University of Jaén, Jaén, Spain- jravi@ujaen.es  
b Department of Cartographic Engineering, Geodesy and Photogrammetry, University of Jaén, Jaén, Spain – fjariza@ujaen.es 

* Corresponding author 
  

Abstract: The modelling of the altimetric error is proposed by means of the mixture of normal distributions. This 
alternative allows to avoid the problems of lack of normality of the altimetric error and that have been indicated numerous 
times. The conceptual bases of the mixture of distributions are presented and its application is demonstrated with an 
applied example. In the example, the altimetric errors existing between a DEM with 5x5 m resolution and another DEM 
with 2x2 m resolution are modelled, which is considered as a reference. The application demonstrates the feasibility and 
power of analysis of the proposal made. 
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1. Introduction 
Digital Elevation Models (DEM) are topographic data that 
following a model (e.g., contour lines, point clouds, 
meshes, triangle networks, etc.) digitally represent the 
elevations (elevations or altimetry) of the bare terrain. 
DEMs have application in numerous branches of science 
and engineering and are used mainly for the calculation of 
height, slope, orientation and delimitation of basins 
(Ariza-López et al., 2018b). So that, DEM are considered 
as base data, and in this way the United Nations (UN-
GGIM, 2019) and the European Union 
(https://inspire.ec.europa.eu/Themes/Data-
Specifications/2892) consider them as a theme in their lists 
of relevant geospatial data layers. 
In the geomatic field, the quality of DEMs is usually 
understood as the altimetric positional accuracy of point 
data. Given a data product (PRO) and a reference of higher 
accuracy (REF), the altimetric discrepancies, or errors, (d 
= ZPRO-ZREF) are analyzed in a given set of points. 
There are very numerous approaches and methods 
developed to evaluate this positional accuracy (Mesa-
Mingorance and Ariza-López, 2020). The best way to 
evaluate or control positional accuracy is by applying 
standardized methods, for example the new ASPRS 
standard (ASPRS, 2015), but there are many others (see a 
current guide of the most outstanding in Ariza-López et al., 
2019). Until now, these standards are based on the 
assumption of the normality of errors (e.g., ASCE 1983, 
FGDC 1998, ASPRS 2015) which allows to the 
application of a parametric model: the normal distribution 
where the mean (μ) and the standard distribution (σ) are 
the position and scale parameters of the distribution. 
However, many studies (Zandbergen 2008, 2011; Maune, 
2007) indicate that positional errors are not normally 
distributed. Regarding the work with methods based on the 
assumption of normality of the data, the non-normality of 
these can have several consequences depending on the 

degree of non-normality and the robustness of the applied 
method. In this case, non-normality violates a basic 
assumption of the method, and this violation is important 
from a strict perspective. 
The normal distribution is a suitable distribution to 
represent real-valued random variables. Therefore, fully 
adequate to describe the altimetric discrepancies d. 
However, the abundance of references indicating the non-
normality of altimetric-discrepancy data leads us to look 
for alternative statistical approaches, for example 
approaches are the use of robust statistics (Höhle and 
Höhle, 2009), the use of tolerances based on observed 
distributions (Ariza-López and Rodríguez-Avi, 2018a).  
In this work, a new way is explored, which consists in 
assuming that the altimetric discrepancies do not really 
come from a single normal distribution and that, on the 
contrary, they are the result of the mixture of several 
normal distributions. This way is very powerful, and 
interesting, since it consists of decomposing the observed-
error density function into a composition of a certain 
number of normal functions such that they adequately 
approximate it, that is, we work with a tool equivalent to 
what in analysis of signals consists of decomposing a 
signal by means of series of sine/cosine functions (Fourier 
transform). 
The underlying idea is that the observed variable really 
comes from a mixture of data from distributions that 
follow the same model (the normal), but with different 
parameters (means and standard deviations). In this way, 
the probability of an observed value comes from the 
mixture of the probabilities that it comes from each of the 
distributions that make up the mixture. The first works date 
back to 1894 when Pearson worked with the mixture of 
two normal distributions with the same variance and has 
been developed by multiple researchers (a detailed review 
can be seen in McLachlan-Peel, 2000; McLachlan et al., 
2019, or Huang et al., 2017 and some examples of recent 
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applications of mixtures in different fields can be seen, for 
instance, in Zhao et al., 2021 or Li et al., 2021). 
To the best of our knowledge, this approach has never been 
previously applied to the case of errors in DEM. Thus, the 
objective of this paper is to propose the use of this well-
known general-statistical approach for analyzing and 
describing the altimetric positional accuracy, and that can 
be applied to any type of error data from DEM. 
This document is organized in the following way; section 
2 presents a basic conceptual approach to the mixture of 
normal distributions. In section 3 an application method is 
proposed and in section 4 the proposed method is applied 
step by step to the case of data from two DEM with 
different spatial resolutions (2x2 m and 5x5 m). Section 5 
presents the discussion and finally, some general 
conclusions are included. (ICA):  
 

2. Mixture of Normal distributions  
The assumption of error’s normality in measures appears 
from the same origin of the normal distribution. Indeed, 
Gauss obtained it by studying astronomical errors. In fact, 
error’s normality implies that there are not any external 
cause of errors, but pure chance.  
Nevertheless, in many cases, a distribution of measure 
errors, even when the underlying normality is adequate, 
can be overall non-normally distributed. This occurs when 
errors come from normal distribution but with different 
parameters. In this case, the mixture of data originating 
from different normal distributions cannot be adequately 
modelled by a single normal distribution.  
In this paper we propose an approach of this problem about 
the distribution of errors based on the use of Gaussian 
finite mixture models. In this context, we try to determine, 
through their parameters, which are the normal 
distributions that are mixed in the observed data set.  
In a theoretical point of view, we assume that the vector of 
observed errors 𝑋𝑋 = (𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) is a random sample that 
come from a mixture of 𝑔𝑔 > 1 arbitrary distributions of 
probability. Then, the density function of each 𝑋𝑋𝑖𝑖 is given 
by  

𝑔𝑔𝜃𝜃(𝑥𝑥𝑖𝑖) =  �𝜋𝜋𝑗𝑗𝜙𝜙𝑗𝑗(𝑥𝑥𝑖𝑖)
𝑔𝑔

𝑖𝑖=1

,                𝑥𝑥𝑖𝑖 ∈  ℝ (1) 

Where 𝚯𝚯 = (𝝅𝝅,𝜽𝜽) = �𝜋𝜋1, … ,𝜋𝜋𝑔𝑔,𝜃𝜃1, … ,𝜃𝜃𝑔𝑔� is the vector 
of parameters in such a way that 𝜋𝜋1 + ⋯+  𝜋𝜋𝑔𝑔 = 1, with  
𝜋𝜋𝑖𝑖 > 0 ∀𝑖𝑖 and (𝜃𝜃1, … ,𝜃𝜃𝑔𝑔) is the vector of parameters of 
each mixing distribution that comes from any absolutely 
continuous probability distribution family, ℱ. In our case 
we consider that ℱ =  {𝜙𝜙(∙| 𝜇𝜇,𝜎𝜎)} is the family of density 
functions 𝒩𝒩(𝜇𝜇,𝜎𝜎), (𝜇𝜇,𝜎𝜎) ∈ ℝ × ℝ+. In consequence, we 
need to estimate the vector of dimension 3𝑔𝑔: 

𝚯𝚯 = �𝜋𝜋1, … ,𝜋𝜋𝑔𝑔, (𝜇𝜇1,𝜎𝜎1�, … , (𝜇𝜇𝑔𝑔,𝜎𝜎𝑔𝑔)) (2) 
In order to estimate (2) we utilize the EM algorithm 

(Dempster et al, 1977), that provide an iterative solution of 
the calculus of Maximum Likelihood estimators (MLE) in 
problems with missing values. The use of the EM 

algorithm is suggested not only for evidently incomplete 
data (missing values, truncated distributions, censored or 
grouped distributions), but also for statistical models 
where the absence of data is not so evident (McLachlan – 
Krishnan, 2008, McLachlan et al, 2019) as occurs with 
distributions obtained as mixtures. This algorithm uses, in 
an iterative way, the operator:  

Q�θ�θ(t) � = E�logℎ𝜃𝜃(𝐶𝐶) |𝑥𝑥,𝜃𝜃(𝑡𝑡)� (3) 
where 𝜃𝜃 ∈ Θ, 𝜃𝜃(𝑡𝑡) is the value obtained at iteration 𝑡𝑡 and 
the expectation refers to the distribution of 𝑘𝑘𝜃𝜃(𝑐𝑐|𝑥𝑥) of 𝑐𝑐 
given 𝑥𝑥 for the value 𝜃𝜃(𝑡𝑡) of the parameter. Each iteration 
has two steps: (i) E-step where Q�θ�θ(t) � is computed and 
(ii) M-step where these values are used to maximize the 
likelihood of the mixing distribution and obtain the 
updated estimates 𝜃𝜃(𝑡𝑡+1).   
Once parameters have been estimated, and by the Bayes 
theorem, we proceed to make a probabilistic grouping to 
assign each value of the original set (or of the whole 
population), to the corresponding normal distribution to 
which has more pertaining probability, according to the 
posterior probabilities: 

𝜋𝜋�𝑖𝑖𝑖𝑖 =
𝜋𝜋�𝑖𝑖  𝑓𝑓𝑖𝑖(𝑥𝑥𝑗𝑗|(𝜇̂𝜇𝑖𝑖,𝜎𝜎�𝑖𝑖)) 

∑ 𝜋𝜋�𝑚𝑚 𝑓𝑓𝑚𝑚(𝑥𝑥𝑗𝑗|(𝜇̂𝜇𝑚𝑚,𝜎𝜎�𝑚𝑚))𝑔𝑔
m=1

 ,   (4) 

where 𝑥𝑥𝑗𝑗 ∈ ℝ, 𝑔𝑔 is the number of mixing distributions and 
𝜋𝜋�𝑖𝑖𝑖𝑖  is the posterior probability that 𝑥𝑥𝑗𝑗 belongs to the group 
with density function 𝑓𝑓𝑖𝑖. In this way, given an observed 
value, it is assigned to the corresponding normal 
distribution where this probability is maximum.   
In addition, we can calculate probabilities in the final 
mixed models, adding all probabilities for each point in the 
g obtained models:  

𝑃𝑃�𝑋𝑋 = 𝑥𝑥𝑗𝑗� =  �𝜋𝜋�𝑖𝑖𝑖𝑖

𝑔𝑔

𝑖𝑖=1

 ,     xj ∈ ℝ𝑟𝑟 (5) 

where 𝜋𝜋�𝑖𝑖𝑖𝑖 are obtained in (4). 

3. Description of data.  
To show an example of an application on real data, a study 
area around Allo (Navarra, Spain) is used by means of the 
following digital elevation models: 

• DEM02. It is a gridded DEM (2x2 meter 
resolution), it was generated in 2017 and its 
primary data source is a Lidar survey (second 
coverage of the PNOA-LiDAR project 
https://pnoa.ign.es/estado-del-proyecto-
lidar/segunda-cobertura). It is considered as the 
reference in this example. 

• DEM05. It is a gridded DEM (5x5 meter 
resolution), it was generated in 2012 and its 
primary data source is a Lidar survey (first 
coverage of the PNOA-LiDAR project 
https://pnoa.ign.es/estado-del-proyecto-
lidar/primera-cobertura). 

Both DEM data sets come from the Instituto Geográfico 
Nacional (IGN, Spain, www.igne.es) and are freely 
available. In relation to the study area, Figure 1 shows a 
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general vision. The area is 504 km2, and it has a varied 
relief, but not abrupt, with valleys of different widths, and 
areas with different degrees of undulation. The elevation is 
in the interval 316-1046 m, mean value of elevation is 468 
m and the standard deviation of the elevation is 92.8 m. 

 
Figure 1: Study area (Allo, Navarra, Spain).  

The subtraction of both models (DEM05 - DEM02) 
allows to obtain the altimetric discrepancy model. 
Assuming a global normal distribution for these 
discrepancies the relevant parameters values are: μ = -
0.017 m, and σ = 0.280 m. Several experts took samples 
manually in the altimetric discrepancies model. These 
zones represent different altimetry discrepancy 
environments between DEM05 and DEM02. Table 1 
presents the 15 labeled categories under consideration and 
the account of cases (DEM cells).  

Code Category N 

 0  Tree-lined roadside 1045 

10  Hilly 144353 

20  Terraces  17159 

30  Parcels’ boundaries  3337 

40  Built  44223 

41  Built scattered  17922 

50  Dense Forestry 13158 

60  Water 3015 

61  Paved roads 7380 

62  Fallow land 19232 

63  Plain  4246 

64  Fruit trees  6133 

65  Irrigated land 49826 

66  Valley between hills 2507 

70  Sloped scrub  5099 

Total 338635 

Table 1: Codes and Categories. 

Additionally, Table 2 show a descriptive analysis of 
each category and the global data.  

 
 

Code 
Mean  

[m] 

Median 

[m] 

s.d. 

[m] 

Min. 

[m] 

Max 

[m] 

 0  -0.417 -0.463  0.318   -1.229  0.403 

10  -0.113 -0.093  0.122   -2.517  1.732 

20   0.351  0.403  0.457   -1.748  2.243 

30  -0.140 -0.026  0.468   -2.054  1.258 

40   0.024  0.038  0.307   -3.480  2.951 

41  -0.190 -0.058  0.481   -2.788  2.477 

50   0.198  0.112  0.437   -1.818  3.046 

60   1.232  1.377  0.951   -0.691  3.094 

61  -0.099 -0.101  0.116   -3.775  0.948 

62   0.197  0.231  0.191   -0.228  0.601 

63  -0.028 -0.005  0.078   -0.700  0.237 

64  -0.129 -0.113  0.080   -0.568  0.179 

65  -0.053 -0.062  0.084   -0.268  0.340 

66  -0.119 -0.125  0.063   -0.317  0.073 

70   0.129  0.122  0.205   -0.652  1.356 

Total  -0.017     -0.060    0.280    -1.628   3.094 

Table 2: Descriptive analysis. 

Figure 2 shows the quantile-quantile plot and the 
expected normal distribution (blue line). In the three 
figures we observe the presence of several local modes, 
and a significate deviation from normality. That suggests 
the possibility of a mixture of normal distribution as an 
underlying data model.  

Figure 2: Normal Q-Q Plot. 
Figure 3 shows the global histogram of the 338635 

analyzed points, whereas Figure 4 shows this histogram 
restricted to the interval (-0.5, 0.5), where we can observe 
an irregular shape with some local modes.  
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Figure 3: Histogram of altimetric discrepancies.  

 
Figure 4: Histogram of altimetric errors (from -0.5 to 0.5). 

4. Method: the mixture model selection  
The first step is to determine 𝑔𝑔, the number of mixing 
normal distributions that compound the global mixture, to 
reproduce the observed form of errors. To deal with this 
problem we apply some information criteria to decide the 
best model (see for instance Cameron-Trivedi, 2013; 
Burnham-Anderson, 2003). Concretely we calculate the 
Akaike Information Criteria (𝐴𝐴𝐴𝐴𝐴𝐴), defined as:  

𝐴𝐴𝐴𝐴𝐴𝐴 =  −2ℒ + 2𝑝𝑝,   (5) 
where ℒ is the value of the log-likelihood obtained through 
the estimation procedure, 𝑛𝑛 is the sample size and 𝑝𝑝 in the 
number of parameters, in this case, 3𝑔𝑔. We have to take 
into account that this measure, related to the Kulblak 
Leibler distance is not a contrast about the model goodness 
of fit, but only make a comparison between models, in the 
way that the best model is which the obtained value is 
minimum.  
Table 3 shows AIC criteria when 𝑔𝑔 comes from 2 to 9, and 
we observe that the minimum value is accomplish for 𝑔𝑔 =
8. All calculations have been carried out using the package 
mixtools of R (R, 2021, Benaglia et al., 2008), that provide 
an estimation of the parameter vector 𝚯𝚯 given in (2). 
According to Table 3, we propose a mixture of 8 normal 
distributions with different parameters to model the 
distribution of altimetric errors. 

𝑔𝑔   AIC  𝑔𝑔   AIC  
2 -157032.2 6  -169964.5 
3  -157026.2 7   -170064.7 
4 -160257.4 8   -171074.8 
5 -168505.7 9   -170100.0 

Table 3: Values of 𝐴𝐴𝐴𝐴𝐴𝐴 for 𝑔𝑔 from 2 to 9. 

Table 4 shows the vector of estimated parameters, 𝚯𝚯� , 
obtained, where (𝜇𝜇𝑖𝑖,𝜎𝜎𝑖𝑖) are the parameters of the 𝑖𝑖 normal 
distribution and 𝜋𝜋𝑖𝑖 its probability 

normal 𝜇𝜇𝑖𝑖  𝜎𝜎𝑖𝑖  𝜋𝜋𝑖𝑖  
1 0.3094 0.1401 0.0743 
2 0.1184 0.5602 0.1171 
3 -0.1238 0.0339 0.1503 
4 -0.0968 0.0258 0.1463 
5 -0.2497 0.0955 0.1313 
6 -0.0191 0.0429 0.2765 
7 0.086 0.062 0.1004 
8 2.0172 0.4489 0.0039 

Table 4: Estimated parameters when 𝑔𝑔 = 8. 
We can see that there is a small set of data that are 
extremely dispersed, and only 27% of the data correspond 
to errors with a mean of practically 0. It is also worth 
noting high values of the standard deviations and that the 
probabilities of belonging are very distributed among the 
groups (an exception to the last, which are the most 
positively biased). Figure 5 graphically represents the fit 
of the 8 normal distributions (colored lines) and the fit to 
the true observed density, which is the dotted line. 

 

 
Figure 5: Graphical representation with 8 normal. 

Once the number of mixing distribution is determined 
and parameters are estimated, the next step is about the 
behaviour of the resulting mixed distribution. For this, and 
using (4) we analyse all sampling points to the distribution 
to which it is most likely to belong. In this case, Table 5 
shows the number of sampling points that can be assigned 
to each group, where the groups are those that appear in 
Table 4.  

𝑔𝑔  Number of points  
1 28575 
2 17263 
3 49076 
4 62715 
5 41490 
6 104194 
7 34068 
8 1254 

Table 5: Number of sampling points assigned to each group. 
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In this way, and using (5), we can obtain the mixed 
theoretical distribution, and we compare it with the 
observed empirical distribution. Figures 6 and 7 show a 
superposition of the histogram of the empirical distribution 
and the theoretical density curve (in orange) obtained from 
the estimated normal distributions. In Figure 7 case, only 
values from -1 to 1 are drawn because the high range of 
errors. Additionally, in this Figure we show the normal 
density (in green) with mean -0.017 m and standard 
deviation 0.280 m. 

 
Figure 6: Observed Histogram and expected density of altimetric 
errors. 

 
Figure 7: Observed Histogram and expected density of altimetric 
errors (from -1 to 1). In green, normal density considering that all 
data come to a single normal. 

5. Results and analysis  
Starting from the specified model, we can obtain 
probabilities using it and compare it with the empirical 
distribution and the one obtained assuming a normal 
𝒩𝒩(−0.017, 0.280). Table 6 shows several probabilities 
obtained in these three ways: 

• In the column labeled “Empirical model”, values 
are the relative frequency of points that verify the 
row condition,  

• In the column labeled “Mixture model”, 
probabilities are obtained using (4). That is to say, 
is the weighted (by the value of 𝜋𝜋�𝑖𝑖) sum of the 
eight normal distribution functions 

• In the column labeled “One Normal”, 
probabilities are directly obtained from a Normal 

distribution with mean -0.017 m and standard 
deviation 0.280 m. 
 

Value Empirical 
model 

Mixture
Model 

One 
Normal 

𝑋𝑋 > 1.1 0.0081 0.0085 3.28e-5 
𝑋𝑋 > 0 0.3285 0.3289 0.4751 

𝑋𝑋 < −0.125 0.2523 0.2526 0.3505 
𝑋𝑋 > 1.5 0.0042 0.0042 3.0e-08 
𝑋𝑋 < −1 0.0027 0.0027 0.0002 

−0.1 < 𝑋𝑋 < 0.1 0.4723 0.4718 0.2785 
Table 6: Comparison between empirical model, mixed model and 
the 1-Normal model. 
In all cases we observe that the probabilities obtained 
through the mixed model are very close to the observed 
relative frequencies provided by the data, especially for the 
values in the tails.   
Once the points have been assigned, in the form that each 
point 𝑥𝑥𝑗𝑗 is assigned to the group where the value 
𝜋𝜋�𝑖𝑖  𝑓𝑓𝑖𝑖(𝑥𝑥𝑗𝑗|(𝜇̂𝜇𝑖𝑖 ,𝜎𝜎�𝑖𝑖))is maximum (Table 5), the next step 
consists on relating these new eight groups with the initial 
point classification according to its terrain type and that 
appears on Table 1. Due that both variables (ground type 
and assigned group) are qualitative, a contingency table 
relating the type of terrain and the distribution to which it 
has been assigned can be built. This contingency table 
appears in Tables 7 and 8, where the value 𝑛𝑛𝑖𝑖𝑖𝑖 indicates the 
number of points that comes from the terrain type 𝑖𝑖 and 
have been assigned to the group 𝑗𝑗  

Terrain 
type 

a posteriori Group  
 N1   N2  N3  N4  

0  15   525   58   34  
10  223   317   22111   38629  
20  6908   6948   206   159  
30  610   748   153   130  
40  5483   2662   2713   3268  
41  488   1975   1803   2235  
50  3024   2366   785   622  
60  118   1391   25   13  
61  4   0   1618   4795  
62  10092   201   194   1454  
63  0   0   1072   161  
64  0   0   1720   2211  
65  62   0   15300   8187  
66  0   0   1091   594  
70  1548   130   227   223  

Table 7: Number of sampling points by type that belongs to 
groups 1-8. 
 

Terrain 
type 

a posteriori Group  
N5 N6 N7 N8 

0  224   129   60   0   
10  30296   49340   3437   0   
20  824   635   1459   20   
30  569   503   624   0   
40  3707   12987   13403   0   
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41  2132   7557   1732   0   
50  995   2391   2975   0   
60  189   25   20   1234   
61  86   575   302   0   
62  6   4420   2865   0   
63  13   2607   393   0   
64  1146   1043   13   0   
65  690   20445   5142   0   
66  326   484   12   0   
70  287   1053   1631   0  

Table 8: Number of sampling points by type that belongs to 
groups 1-8 (continuation). 
 
Starting from this contingency table we are interested in 
studying if both variables are related. In this case we can 
apply the Pearson's 𝜒𝜒2 test for independence in 
contingency tables, where the null hypothesis is that the 
variables have no relationship between them. In this case, 
the value 𝜒𝜒2 = 412294.4 that under the null hypothesis 
follows a 𝜒𝜒2 distribution with 98 degrees of freedom 
(d.o.f) so the p-value is 0. Similarly, the likelihood ratio 
test produces a 247898.4 statistic, which follows the same 
𝜒𝜒2 distribution with 98 d.o.f and its p-value is also 0. In 
fact, if we calculate the Pearson contingency coefficient is: 

𝐶𝐶𝑝𝑝 =  �
𝜒𝜒2

𝜒𝜒2 + 𝑛𝑛 =  �
412294

412294 + 338635 = 0.7410 (6) 

The proportion of points of each type of terrain that belong 
to each group are given in Tables 9 and 10. The most 
frequent model for each terrain type are highlighted in 
bold.  

Terrain 
type 

a posteriori Group  
 N1   N2  N3  N4  

0  1.44   50.24   5.55   3.25  
10  0.15   0.22   15.32   26.76  
20  40.26   40.49   1.20   0.93  
30  18.28   22.42   4.58   3.90  
40  12.40   6.02   6.13   7.39  
41  2.72   11.02   10.06   12.47  
50  22.98   17.98   5.97   4.73  
60  3.91   46.14   0.83   0.43  
61  0.05   0.00   21.92   64.97  
62  52.48   1.05   1.01   7.56  
63  0.00   0.00   25.25   3.79  
64  0.00   0.00   28.05   36.05  
65  0.12   0.00   30.71   16.43  
66  0.00   0.00   43.52   23.69  
70  30.36   2.55   4.45   4.37  

Table 9: Proportion of sampling points by type that belongs to 
groups 1-8. 
 

Terrain 
type 

a posteriori Group  
 N5   N6   N7  N8   

0  21.44   12.34   5.74   0.00   
10  20.99   34.18   2.38   0.00   
20  4.80   3.70   8.50   0.12   

30  17.05   15.07   18.70   0.00   
40  8.38   29.37   30.31   0.00   
41  11.90   42.17   9.66   0.00   
50  7.56   18.17   22.61   0.00   
60  6.27   0.83   0.66   40.93   
61  1.17   7.79   4.09   0.00   
62  0.03   22.98   14.90   0.00   
63  0.31   61.40   9.26   0.00   
64  18.69   17.01   0.21   0.00   
65  1.38   41.03   10.32   0.00   
66  13.00   19.31   0.48   0.00   
70  5.63   20.65   31.99   0.00 

Table 10: proportion of sampling points by type that belongs to 
groups 1-8 (continuation). 
It is noteworthy that 40% of the elements of land type 60 
belong to distribution 8, which is the one with the highest 
average, which is called “Water”. Similarly, in 
distributions 3, 5 and 7 there are no groups for which they 
are dominant. 
On the other hand, having the mixture model allows it to 
be applied to all the positions of the DEM and to obtain a 
spatial representation of the probability of belonging to 
each altimetric discrepancy value to each of the normal 
distributions that make up the mixture. This is what is 
presented in Figures 8 and 9 for groups N1 and N8, 
respectively. As can be seen, Figure 8 presents greater 
probabilities in the northern half, which is consistent with 
the terrain types where N1 participates. The distribution 
shown in Figure 9 is consistent with those areas, with a 
reduced dimension, where the highest values of altimetric 
discrepancy occur. 

Figure 8: Spatial distribution of probabilities of Normal 1 

Figure 9: Spatial distribution of probabilities of Normal 8 

6. Discussion  
The hypothesis of normality underlying measurement 
errors presupposes the fact that these errors are random, 
independent and have no other external cause that 
influences them (pure chance). Nevertheless, in practice, 
in many cases the normality hypothesis is not fulfilled, as 
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is the example here shown (see Fig.4). This non-normality 
can be attributed to multiple causes. One of these causes, 
that is very common, is the fact that even though 
measurement errors are normally distributed, they come 
from a mixture of several normal distributions with 
different parameters. In this case the overall population, 
obtained as an addition of data from these different normal 
distributions, is not, itself, a normal distribution. In the 
case that has been presented, it has been considered that 
the mixture of normal distributions come from different 
topographic and land cover situations, but it is also true 
that the parameters of the data collection by the LiDAR 
sensor (e.g., height, angle of incidence, humidity of the 
ground, etc.), influence altimetric errors.  
The great discussion that can be raised about the previous 
approach is whether to work with or without prior 
information. If additional information is available on the 
points, the groups obtained by assigning each point to the 
mixing normal distribution to which it is most likely to 
belong can be related with that additional information. In 
our case, this information is qualitative -the type of terrain-
, but it can be of any other type. This helps to better 
understand the cause of the error and identify, for example, 
those areas most prone to extreme errors. All of this 
information can be useful when designing more precise 
quality control procedures. If this information is not 
available, the method is also capable of determining the 
number of mixing normal distributions and their 
parameters; however, in this case it may be more complex 
to find an obvious physical meaning for the categories that 
are made up. 
The examples of probabilities presented in Table 6 clearly 
indicate the goodness of fit to the observed data. In 
addition, it is also evident that the option of adjusting a 
single global normal is a bad approximation for this case. 
Tables 8 and 9 present results that show that there are types 
of terrain that are better defined than others, understanding 
as better defined that they present an explanation based on 
few groups, that is, a high proportion of cases in those few 
groups (e.g., terrain types 0, 61, 63). There are also other 
cases where this is not the case (e.g., type 30). It is 
interesting to note that group 8, which is responsible for 
the largest outliers in the general normal model, is 
concentrated in a single type of terrain (type 60). These 
results show us that, perhaps, the terrain types 
classification being considered, or the samples taken from 
them, are not the most appropriate, but it is not a problem 
to understand that the method of mixtures works properly. 
The parameter estimation method also requires a 
comment. We have used the EM method to estimate the 
parameters that correspond to each of the distributions that 
make up the mixture. The EM is a well-known algorithm 
that is available in many computerized calculation tools 
and, as shown, its use is relatively straightforward. This 
algorithm is for general use in optimization and is included 
in packages suitable for determining the parameters of 
normal mixtures, as is the case of the mixtools package of 
R (R, 2021, Benaglia et al., 2008), that has been used in 
this work. If this is possible, as in the example presented 

above, we can reproduce the empirical data distribution 
function through a theoretical model, which, once 
obtained, can be extended to the entire population. In this 
way, we go from having a model that cannot be explained 
by a single normal, and that can be considered as non-
parametric, to a parametric model with multiple 
parameters. This provides a new way of analysis since the 
methods based on a single normal can be applied to models 
based on mixtures of normal distributions. Of course, the 
last will be more complex, but not intractable. 

7. Conclusions  
An application of the finite mixture analysis techniques of 
distributions to the case of altimetric discrepancies in a 
DEM is presented. The theoretical basis and the tools for 
its application already exist, so it is not risky or expensive 
to apply them to this field. 
A method for this type of analysis was developed, and a 
practical example has been carried out based on real data, 
that shows how to carry out this application, as well as the 
results obtained. 
We consider that this technique for the analysis of 
discrepancies in altimetry allows us to apply the 
conventional positional quality assessment methods to this 
mixture model, which opens a line that extends its 
possibilities and avoids the limitations of non-normality 
that arise in many studies of error in altimetry. So that, 
looking ahead, an interesting research line is to analyze 
how the positional accuracy assessment standards can be 
applied when a characterization of the errors through 
mixtures is available. 
This procedure may also be applied in many other cases 
involving continuous data where normality can be 
assumed in advance.  
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