
An Efficient Data Structure Providing Maps of the Frequency
of Public Transit Service Within User-Specified Time Windows

Annika Bonerath a∗, Yu Dong b, Jan-Henrik Haunert a

a University of Bonn, surname@igg.uni-bonn.de
b University of Bonn

* Corresponding Author

Abstract: To understand the quality of a public transportation network, map-based visualizations are the first choice.
Since the network quality depends on the transportation schedule, the visualization interface should incorporate time. In
this work, we provide such an interface where users can filter the data for time windows. When a user queries for a certain
time window, we display all network segments that are traversed by at least θ means of public transportation, e.g., buses
in the time window on the map. This gives insights into the frequency of the public transit service.
Since such transportation networks can contain a high number of network segments, testing each network segment at the
moment when the user specifies the time-window query is not fast enough. We investigate an approach to provide the
query result in real time. Our contribution is a data structure that answers such arbitrary time-window queries from the
user interface. The data structure is based on a tree structure which is augmented with further information. To evaluate
our data structure, we perform experiments on real-world data. With our data structure, we answer time-window queries
in at most 25 milliseconds whereas testing each network segment on-demand takes at least 60 milliseconds for the data
set that has 102599 road segments.

Keywords: spatio-temporal data, interactive visualization, data structure, time window

1. Introduction

For many people, the public transport network plays a ma-
jor role in their daily lives. Therefore, careful planning is
of utmost importance. This means that decision-makers
must be able to easily inform themselves about the spa-
tial and temporal patterns of connectivity meaning the fre-
quency of public transit service. The most common visual-
izations of public transport data are (1) the schedule tables
for transportation lines at each station and (2) a map with
the routes of all transportation lines. Although both visual-
izations work well for certain applications, e.g., informing
users of their next route, they do not provide a high-level
overview of the spatio-temporal patterns of the entire net-
work. We focus this work on bus networks but it can be
easily extended to networks that also contain trams, etc.

In this work, we look at an interactive visualization ap-
proach that enables users to explore the spatio-temporal
patterns of the public transportation network.

1. spatial patterns: Which parts of the city are served,
i.e. , which roads are traversed by buses?

2. temporal patterns: In which time windows are
which parts of the city served?

Driven by these two criteria, we introduce the concept of
frequently served road segments, i.e., we say a road seg-
ment is frequently served for a time window if it is tra-
versed by at least θ buses in the time window. We consider
θ to be a given threshold for the network. When a user

12a.m. 12p.m. 12a.m.

(a) largest time window

12a.m. 12p.m. 12a.m.

(b) small time window

Figure 1. The public transportation network and the user
interface for two time windows. The road segments that are
frequently served are drawn in pink. Between (a) and (b)
the users have slid the right boundary of the time window.

explores the public transportation network, we display all
frequently served road segments for the queried time win-
dow. In a more enhanced variant of the visualization, one
can either use more than one threshold or encode the num-
ber of buses that traversed the road for all roads that have
been traversed by more than θ buses.

We note that there are other concepts for the visualization
of patterns of a public transportation network, e.g., dis-
playing all road segments at which at least θ buses stop
in the queried time window instead of looking at travers-

Advances in Cartography and GIScience of the International Cartographic Association, 4, 1, 2023.
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-1-2023 | © Author(s) 2023. CC BY 4.0 License

2 of 8

ing buses. We want to emphasize that our data structure
supports also such a concept.

In the following, we introduce our user interface and how
the user can interact with it. Our interface is based on a
map and a timeline. The timeline consists of a time axis
(e.g., showing hours of a day) as well as a time window
represented by a rectangle. An example of such a time
window is Monday 9 a.m. till Monday 11 a.m. To enable
user interaction, we use time sliders as introduced by An-
drienko and Andrienko (1999). The user can interact by (i)
panning: continuous translation of the time window; (ii)
left or right boundary slide: continuous change of the left
or right boundary of the time window. We implement the
interaction by three buttons; see Figure 1. With the time
slider, the user can filter the data for a time window. For
each time window, we display the frequently served roads
on the map, i.e., the road segments that were traversed by
at least θ buses in the time window; see Figure 1.

Using this visualization, the user can easily and quickly
assess parts of a city that are not that frequently served
by buses. By interacting with the time window the users
can explore temporal and spatial patterns. This can en-
able them to get a quick overview of the network. Experts
and decision-makers can use this visualization in combina-
tion with background knowledge (e.g. population density)
to make better-informed decisions.

In the following, we give a formal definition of our prob-
lem.
Frequently Served Roads for Time-Window Query.
input:

1. The road segments R of a public transportation net-
work where each road segment is annotated with the
time stamps of bus traversals.

2. A pre-defined threshold θ that specifies the minimum
number of bus traversals such that a road segment is
frequently served.

3. A user-defined time-window query Q = [t, t ′].

output:

The set of all road segments RQ that were traversed by at
least θ buses in the time window Q.

In order to allow a pleasant user experience, when explor-
ing the frequently served road segments of a city, a user
should be able to receive the visualization in real-time for
a time-window query. Motivated by movies with a frame
rate of 24 images per second, we want to achieve a re-
sponse time of roughly 40 milliseconds.

A simple approach for computing the visualization for a
time-window query is an on-demand compuation. Here,
we go through all road segments and we count the num-
ber k of bus traversals in the time window Q for each road
segment. Then, we report all road segments where k is
larger than the given threshold. All reported road seg-
ments are displayed. Especially for large data sets, such
an on-demand implementation can lead to high computa-
tion times. In our experiments with a network of 102599
road segments, such a computation approach takes at least

road segments pre-processing

�∗-structure
frequently served
road segments

time-window query

Figure 2. Pre-processing the public transportation network
into our data structure.

60 milliseconds for each query. Hence, the computation
time achieved by this on-demand approach is not sufficient
and interaction might be very unpleasant.

Our contribution is a data structure that enables a real-time
interaction with the time slider. Note that the visualization
remains the same as for the on-demand approach that we
described before but we speed-up the computation. We call
this data structure θ ∗-structure. The general idea is that we
pre-process the public transportation network consisting of
the road segments annotated with the bus traversal times
into the θ ∗-structure; see Figure 2. This θ ∗-structure en-
codes the answers for any time-window query. This means
that whenever a user queries for a particular time window,
the answer can directly be obtained from the θ ∗-structure.
The θ ∗-structure is based on a binary tree where each node
of the tree is enhanced with additional information. In par-
ticular, we associate each leaf node of the tree with a road
segment. We investigate which road segment is assigned
to which node. Note that our θ ∗-structure is a generaliza-
tion of the θ -structure presented by Bonerath et al. (2020).
With this work, we resolve the restriction of the θ -structure
that we need an underlying grid and the visualization needs
to be a grid-based density map. We note that our data struc-
ture can be easily extended to support multiple thresholds
just like the θ -structure.

For the evaluation of our data structure, we perform exper-
iments with real-world data from the public transportation
network of Bonn, Germany. The benefit of our data struc-
ture is the speed-up in query time with respect to the on-
demand approach. We show that the query time is smaller
than 25 milliseconds and hence, we consider it to be appro-
priate for real-time exploration. The data structure brings
an additional construction time as costs. It is performed
once in a pre-processing step and in our experiments we
can build the data structure in up to 32 minutes for a net-
work with 102599 road segments. We deem to be accept-
able with regard to the speed-up of the query time.

We structure our paper as follows. At first, we discuss re-
lated work in Section 2. Secondly, we present a formal
model for the θ ∗-structure in Section 3. Then, in Section 4
we present our experimental evaluation on real-world data.
Finally, in Section 5 and Section 6, we give an overview on
more general application scenarios of the θ ∗-structure and
an outlook for future work.

2. Related Work

In the following, we discuss several research fields and
works from these fields that are closely related to our θ ∗-
structure.

Advances in Cartography and GIScience of the International Cartographic Association, 4, 1, 2023.
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-1-2023 | © Author(s) 2023. CC BY 4.0 License

3 of 8

r2

r1 r3

r4

r5
r6

r7

r8

r9

r10

r11

Figure 3. Thinned out (dark grey) and simplified (orange)
road network.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

r4r7r2 r1 r8 r11 r9 r5 r3 r10 r6

Figure 4. θ ∗-structure for a random mapping between the
leaf nodes and the road segments.

Spatio-Temporal Data Visualization In cartography,
the visualization of spatio-temporal data is an important
branch (Williams et al. (2013)). But also other research
fields, e.g., in visual analytics (Keim et al. (2008), An-
drienko et al. (2010), Sun et al. (2013)), and geovisualiza-
tion (Kraak (2003)) contributed to this topic. In particular,
the visualization of public transportation data is an impor-
tant scenario. Amongst others, Forsch et al. (2021) con-
sidered isochrones for travel times given a fixed starting
point, Zeng et al. (2014) developed a visualization system
that combines different views, and Scheepens et al. (2011)
looked at density maps for trajectories that do not neces-
sarily lie on a network.

Dynamic Query Interfaces Kapler and Wright (2005)
introduced dynamic query interfaces as an interaction tech-
nique for the exploration of various kinds of data. Of-
ten, it is implemented for temporal filtering and, then, it
is called time slider (Kapler and Wright (2005), Ahlberg
and Shneiderman (2003), Hochheiser and Shneiderman
(2004), Robinson et al. (2017), Andrienko and Andrienko
(1999), Burigat and Chittaro (2005)). The user can de-
fine a query using sliders and the application gives a real-
time response. Due to the required real-time response, the
problem of efficiency (Tanin et al. (1996)) arises. Overall,
dynamic query interfaces are well studied for user perfor-
mance and they show a good performance in comparison
to a paper printout, a text search, and form-fill-in inter-
faces (Kapler and Wright (2005), Ahlberg et al. (1992)).

Time-Windowed Data Structures Data structures that
can be queried efficiently for time windows were intro-
duced by (Bannister et al. (2013)) and are called time-

windowed data structures. They exist for reporting prop-
erties of relational event graphs (Bannister et al. (2013),
Chanchary and Maheshwari (2019), Chanchary et al.
(2019)), for problems from computational geometry (Ban-
nister et al. (2014), Bokal et al. (2015), Chan and Pratt
(2015, 2016), Chanchary et al. (2018)), and for event visu-
alizations based on α-shapes (Bonerath et al. (2019)) and
density maps (Bonerath et al. (2020)). From a technical
point of view, our data structure is based on the θ -structure.
Hence, we will discuss this structure in detail and highlight
the differences to our approach.

θ -Structure For the θ -structure, Bonerath et al. (2020)
have the scenario that they are given a set of events as in-
put where each event is a pair of a point in space and a
time stamp. An example of such event data is bird observa-
tions. Here, the aim is to visualize grid-based density maps
for time-window queries. To achieve a real-time response
the θ -structure is introduced. It corresponds to a quad-tree
where the leaf node level is induced by the spatial grid.
Further, they introduce for each node of the quad-tree a
time function that improves the query time.

In contrast to the θ -structure, our θ ∗-structure is a binary
tree. We have adopted the time function for each node. The
main contrast to the θ -structure is that there is no straight-
forward mapping between the road segments and the leaf
nodes of the θ ∗-structure. We will discuss several versions
and (experimentally) evaluate these.

3. θ ∗-Structure

In the following, we introduce our θ ∗-structure which
allows efficient querying for frequently-served road seg-
ments in time windows. Let R be the set of n road seg-
ments where each road segment r ∈ R is annotated with a
set of time stamps of the bus traversal times. Let B be a
balanced binary tree with n leaf nodes. In our data struc-
ture, we map each road segment from R to one leaf node of
B. Further, we introduce the time function for each node
of B that speeds up the query time.

We structure the description of the θ ∗-structure as follows.
At first, we introduce the time function that we compute
for each node of B under the assumption that we are given
a mapping between the road segments from R to the leaf
nodes from B. Secondly, we show how to query the θ ∗-
structure for a particular time window. And thirdly, we
discuss different options for mapping the road segments to
the leaf nodes.

3.1 Build a θ ∗-Structure

In this section, we assume that we are given a mapping be-
tween the leaf nodes U = {u1, . . . ,un} of the binary tree B
and the road segments R. In a very simple variant, one
could use a random order of the road segments. In or-
der to simplify the notation and without loss of generality,
we assume that road segment ri is mapped to leaf node ui
for 1 ≤ i ≤ n.

The time-function fi(t) of a leaf node ui reports for any
time-window start time the earliest time-window end time

Advances in Cartography and GIScience of the International Cartographic Association, 4, 1, 2023.
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-1-2023 | © Author(s) 2023. CC BY 4.0 License

4 of 8

time-window start

ti
m
e-
w
in
d
ow

en
d

∞

9
a.m

.

10
a.m

.

1 p.m.

3 p.m.

1
p.m

.

3
p.m

.

9 a.m.
10 a.m.

fv

(a) time function of Equation 1

time-window start

ti
m
e-
w
in
d
ow

en
d

∞ fwfv

fv′

(b) time function of Equation 2

Figure 5. Time function. (a) The time function for one leaf
node of the θ ∗-structure. (b) The time functions of two
sibling nodes fv and fv′ and their parent node fw.

such that the road ri is frequently served, i.e., it is traversed
by θ buses. Take a road segment with four-time stamps
Ti = {9 a.m.,10 a.m.,1 p.m.,3 p.m.} and a threshold θ = 3
as example. Equation 1 and Figure 5a give the time func-
tions for v.

fi(t) =

1 p.m. if t ≤ 9 a.m.
3 p.m. if 9 a.m. < t ≤ 10 a.m.
∞ if 10 a.m. < t.

(1)

Now, we introduce the time-function fw of an internal node
w of B. Let ui, . . . ,u j be the leaf nodes that are descen-
dants of w. We want the time function fw to report for
any time-window start time the earliest time-window end
time such that at least one road segment r ∈ {ri, . . . ,r j} is
frequently served.

We compute the time functions from the bottom of B to
the top. For the leaf nodes, we can compute the time func-
tion as described above. For an internal node w, let v and
v′ be its children for which we have already computed the
time-functions fv and fv′ , respectively. Then, the time-
function fw is the lower boundary of the time-functions fv
and fv′ ; see Figure 5b.

fw(t) = min{ fv(t), fv′(t)} (2)

Overall, we can compute the θ ∗-structure in O(nm logn)
time where n is the number of road segments and m is
the overall number of time stamps. The θ ∗-structure has
asymptotic size of O(nm logn).

3.2 Query a θ ∗-Structure

In the following, we describe how we query a θ ∗-structure
for a time window [tstart, tend]. For a node v of the binary
tree, we say that v reports true for Q if fv(tstart)≤ tend and
otherwise v reports false for Q. For v being an internal
node reporting true means that there is at least one de-
scendant leaf node of v that reports true. For v being a
leaf node reporting true means that the road segment that
corresponds to v is frequently served for Q. The query ap-
proach is straightforward: we start at the root node of the
tree and traverse it downwards as long as we either reach a
leaf node or a node reports false; see Algorithm 1.

r4r7r2 r1 r8 r11 r9 r5 r3 r10 r6

Figure 6. The query procedure for a time-window query Q.
Blue nodes report true, orange nodes report false, and
grey nodes are not queried. The road segments of the two
blue leaf nodes correspond to the frequently served road
segments for Q.

Algorithm 1: QUERY

Data: θ ∗-structure B, time-window query [tstart, tend]
Result: frequently served road segments RQ for

[tstart, tend]
let v be the root node of B;
if v reports true for Q then

if v is leaf node of B then
add corresponding road segment of v to RQ;

else
let B′ and B′′ be the subtrees of B that are
created when we remove v from B;

add result of QUERY(B′, [tstart, tend]) to RQ;
add result of QUERY(B′′, [tstart, tend]) to RQ;

end
end

The running time of checking whether a node reports true
or false for a time-window query, depends on the time
needed to evaluate fv(tstart). Since fv is a staircase func-
tion, we can store it as an array Fv where each row corre-
sponds to the leftmost point of a horizontal segment of fv.
Equation 3 is the array for the time function given in Equa-
tion 1.

Fv =

 −∞ 1 p.m.
9 a.m. 3 p.m.
10 a.m. ∞

 (3)

For evaluating fv(tstart), we perform a binary search on the
first column of Fv for the first value that is larger than tstart.

For a data set of n road segments with m time stamps over
all road segments, and k road segments that need to be re-
ported for a query Q, the asymptotic query time of Algo-
rithm 1 is O(k logn logm).

3.3 Build a Good θ ∗-Structure

In the following, we discuss how to improve the θ ∗-
structure such that the query time is reduced. First, we dis-
cuss what is a good mapping between the road segments
and the leaf nodes. This does not improve the asymp-
totic query time but in the real-world experiments we show
its real-world relevance. Secondly, we show how to in-
corporate the technique fractional cascading (Chazelle and

Advances in Cartography and GIScience of the International Cartographic Association, 4, 1, 2023.
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-1-2023 | © Author(s) 2023. CC BY 4.0 License

5 of 8

ri rj

(a) 13 nodes queried

ri rj

(b) 10 nodes queried

Figure 7. Query where road segments ri and r j are fre-
quently served. (a) ri and r j are mapped to neighboring
nodes. (b) ri and r j are mapped to nodes that are far apart.

Guibas, 1986a,b) which improves the asymptotic and ex-
perimentally evaluated query time.

Mapping In the following, we want to analyze which
order of the leaf nodes of the θ ∗-structure B is advanta-
geous for the query time. In Section 3.2, we described
how B answers a time-window query. Figure 7 shows the
query procedure for two different mappings between the
road segments and the leaf nodes. It shows that a time-
window query Q can be answered more efficiently if all
frequently served road segments for Q lie closely together.
Then, we can exclude large parts of the θ ∗-structure in the
query procedure. Intuitively, it would be good to find a
mapping between the road segments and the leaf nodes
of the θ ∗-structure such that neighboring leaf nodes cor-
respond to road segments that are frequently served for the
same time-window queries. In the following, we provide
an approach that we call max-order to generate such a
mapping. In the experimental evaluation, we compare this
to a random order.

For the max-order we compute the maximal vertical dis-
tance between pairs of time functions fv and fv′ . Let [t1, t2]
be the temporal range where the time functions fv and fv′

are larger than −∞ and smaller than ∞. Then, we define the
maximal vertical distance max-dist of the time function
fv and fv′ as follows

max-dist(fv, fv′) = maxt∈[t1,t2]| fv(t)− fv′(t)| (4)

For the mapping between the road segments and the leaf
nodes, we start with a randomly selected road segment
and associate it to the first node v. Then, we compute the
maximal vertical distance of fv and the time functions of
all other road segments. We associate the road segment
with the smallest maximal vertical distance to the second
leaf node w. We repeat this procedure, now computing
the maximal vertical distances to the time function fw of
node w.

Fractional Cascading To further improve the query
time, we use the method fractional cascading (Chazelle
and Guibas, 1986a,b, de Berg et al., 2008). Without frac-
tional cascading, we need to evaluate each time-function
independently. With fractional cascading, we store point-
ers at the parent node time-function to the child node time-
function. Hence, we need to do just one time a binary
search in the time-function instead of searching the time

J1
J2 J3

Figure 8. Pre-processing of the road network. All grey
roads are never traversed by a bus and are neglected. The
brown roads are each one road segment. The road that con-
sists of the tree blue road segments is split at the junctions
J1, J2, and J3. At each junction either a bus line is added to
the road segment or leaves the road. Hence, we receive the
three blue road segments.

function of each node that we query. This improves the
asymptotic query time to O(k logn+ logm). For more de-
tails, we want to refer to the θ -structure by Bonerath et al.
(2020).

4. Experiments

In the following, we describe our experiments on real-
world data from the public transportation network of Bonn.
First, we give an overview of the pre-processing steps that
need to be done to transform the data into our θ ∗-structure.
Secondly, we evaluate the construction and query times ob-
tained with the different versions.

Data Pre-Processing For our experiments, we used the
public transportation network of the city of Bonn, Ger-
many obtained by the VRS GmbH1 under the data license
Deutschland Zero Version 2.0. The network contains (i)
6880 stations, (ii) 567 bus, tram, and train routes which are
a sequence of stations, and (iii) 121866 trips which consists
of the sequence of stations defined by the routes enriched
with stop times. Based on the geometries provided by the
routes, we processed the data into a graph. To receive
the road segments annotated with the bus-traversal time
stamps, we performed several pre-processing steps, i.e.,

1. computing the traversal times for the road segments
in between stations by linear interpolation

2. merging time stamps of trips where they traverse the
same road segment

3. partitioning road segments where routes come in or
leave the street; see Figure 8.

After the pre-processing phase, we have 29159 road seg-
ments with at least one, on average 24, and at maximum
2354 bus traversal time stamps. We call this data set Bonn.

Although the Bonn transportation network is large, there
are of course much larger networks. In order to simulate
these, we have extended the Bonn dataset. In more detail:
we added the road segments of Bonn, which are not used
in the real-world transportation network and provided them
with one to 200 artificial bus traversal times. Thus we end
up with 102599 road segments. We call this larger dataset
Bonn-Extended.

1https://www.vrs.de/

Advances in Cartography and GIScience of the International Cartographic Association, 4, 1, 2023.
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-1-2023 | © Author(s) 2023. CC BY 4.0 License

https://www.vrs.de/
https://www.govdata.de/dl-de/zero-2-0

6 of 8

Baselines and Versions of the θ -Structure In the fol-
lowing, we compare the response time for time-window
queries for frequently served roads. In particular, we eval-
uate the different versions of the θ ∗-structure that we dis-
cussed throughout the paper

• theta∗-structure: Here, we assigned the road seg-
ments in a random order to the leaf nodes of the θ ∗-
structure. We build and query the θ ∗-structure as de-
scribed in Section 3.1 and Section 3.2.

• theta∗-structure-max: In this version, we as-
signed the road segments to the leaf nodes according
to max-order as described in Section 3.3. In order to
speed up the construction time, we did only compute
the maximal vertical distance to 1000 randomly cho-
sen road segments and chose the one with the small-
est distance for computing the mapping between road
segments and leaf nodes.

We compare these versions of the θ ∗-structure to two sim-
ple baselines that not use the θ ∗-structure:

• on-demand-simple: Here, we count for each road
segment the number of time stamps that are contained
in the time window and then, report all road segments
that are frequently served.

• on-demand-timefunction: Here, we pre-compute
the time function for all road segments. For a time-
window query, we evaluate the time function of all
road segments and report all frequently served road
segments on-demand.

Note again that the visualization for a time-window
query is the same for all four variants θ ∗-structure,
θ ∗-structure-max, on-demand-simple, and
on-demand-timefunction.

Construction Time The construction of the θ ∗-structure
is done in a pre-processing step. Hence, the computa-
tion time is not critical for the application. Nevertheless,
a short construction time is more pleasant. The construc-
tion of theta∗-structure took 2 seconds for Bonn and
20 seconds for Bonn-Extension. The construction of
theta∗-structure-max took 232 seconds for Bonn and
31 minutes for Bonn-Extension.

Query Times We performed the experiments with 100
synthetically generated time-window queries. Figure 9
shows the query time evaluation for Bonn and Fig-
ure 10 for Bonn-Extension. The experiments show that
theta∗-structure and theta∗-structure-max out-
perform the two baseline approaches on-demand-simple
and on-demand-timefunction. Especially, for time
windows that report smaller numbers of road segments
our data structures are more efficient. This is reason-
able since the theoretical running time for a query of
the θ ∗-structure and θ ∗-structure-max depend on
the number of reported road segments, while the the-
oretical running time of the on-demand-simple and
on-demand-timefunction. For the smaller dataset
Bonn, the query times of the data structures close get close
to the query times of the on-demand approaches for an in-
creasing number of reported road segments. For the larger

dataset Bonn-Extension, our data structure still shows
query times below 25 milliseconds while the two baseline
approaches are consistently above 35 and above 60 mil-
liseconds, respectively. Thus, our data structure can al-
low exploration in real-time (as described in the introduc-
tion 40 milliseconds corresponds to 24 frames per second)
while this is critical or not possible with the baseline ap-
proaches. The evaluation of the query times shows outliers
for both data sets. We explain this with background pro-
cesses that are performed in the java implementation.

5. Generalization

In the following, we give two ideas for generalizing the
θ ∗-structure.

5.1 More than One Color

Often it is desired to visualize more information by color
encoding the number of bus traversals of road segments.
One approach is to use multiple fixed thresholds. We want
to emphasize that we can tweak the θ ∗-structure to support
this visualization. It can be implemented straight-forward
as it was discussed for the θ -structure and we want to refer
to Bonerath et al. (2020) for more details.

5.2 Application Scenarios

We want to emphasize that our θ ∗-structure can also be ap-
plied to other scenarios. As mentioned in the introduction,
one can, e.g., display all road segments at which at least θ

buses stop instead of the road segments that were traversed
by at least θ bus.

In the following, we provide two examples where we also
have different underlying geometry types (polygons and
points).

Covid-19 One example is the visualization of Covid-19
infections. As underlying geometries, we use administra-
tive boundaries which corresponds to a set of polygons.
Each polygon is annotated with all the time stamps when a
Covid-19 infection was reported. With the time slider the
user can explore the spatio-temporal pattern, i.e., we dis-
play all countries where the number of infections exceeds
a given threshold for the queried time window. Our data
structure can easily support this scenario. In detail, each
leaf node now represents a polygonal border instead of a
road segment. The concept of the time function can easily
be copied.

Bird Sightings Another example is bird sighting sta-
tions. Here, the underlying geometry is the station loca-
tions, i.e., a set of points. Each station is annotated with a
set of time stamps where each time stamp corresponds to
a sighting of a bird. Then, the user can explore the spatio-
temporal patterns of bird sightings with the time slider. In
this application scenario, the leaf nodes of the θ ∗-structure
correspond to the point location of a station. The rest of
the θ ∗-structure remains as previously described.

Advances in Cartography and GIScience of the International Cartographic Association, 4, 1, 2023.
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-1-2023 | © Author(s) 2023. CC BY 4.0 License

7 of 8

(a) query times for the θ -structure and baseline approaches

(b) query times for θ∗-structure with and without max-order

Figure 9. Query Time Experiments for dataset Bonn.

6. Conclusion and Outlook

In this work, we presented the θ ∗-structure which is a
data structure that supports time-window queries for visu-
alizations of the frequency of public transit service. With
respect to an on-demand computation, our data structure
gives a query speed-up such that users can interact in real-
time while receiving the same visualization. We discussed
several speed-up variants of the θ ∗-structure. In our exper-
iments with the public transportation network of the city of
Bonn, Germany, we achieved query times under 25 mil-
liseconds.

6.1 Acknowledgements

Partially funded by German Research Foundation under
Germany’s Excellence Strategy, EXC-2070 - 390732324
- PhenoRob.

References

Ahlberg, C. and Shneiderman, B., 2003. Visual informa-
tion seeking: Tight coupling of dynamic query filters
with starfield displays. In: The Craft of Information
Visualization, Interactive Technologies, Morgan Kauf-
mann, pp. 7–13.

Ahlberg, C., Williamson, C. and Shneiderman, B., 1992.
Dynamic queries for information exploration: An im-
plementation and evaluation. In: Proceedings of
Conference on Human Factors in Computing Systems
(CHI’92), ACM, pp. 619–626.

Andrienko, G. L. and Andrienko, N. V., 1999. Interactive
maps for visual data exploration. International Journal
of Geographical Information Science 13(4), pp. 355–
374.

Andrienko, G. L., Andrienko, N. V., Demsar, U., Dran-
sch, D., Dykes, J., Fabrikant, S. I., Jern, M., Kraak, M.,

Schumann, H. and Tominski, C., 2010. Space, time and
visual analytics. International Journal of Geographical
Information Science 24(10), pp. 1577–1600.

Bannister, M. J., Devanny, W. E., Goodrich, M. T., Si-
mons, J. A. and Trott, L., 2014. Windows into geometric
events: Data structures for time-windowed querying of
temporal point sets. In: Canadian Conf. on Comput.
Geom. (CCCG’14).

Bannister, M. J., DuBois, C., Eppstein, D. and Smyth, P.,
2013. Windows into relational events: Data structures
for contiguous subsequences of edges. In: Symp. on
Discrete Algorithms (SODA’13), SIAM, pp. 856–864.

Bokal, D., Cabello, S. and Eppstein, D., 2015. Find-
ing All Maximal Subsequences with Hereditary Prop-
erties. In: Symp. on Comput. Geom. (SoCG’15), LIPIcs,
Vol. 34, Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, pp. 240–254.

Bonerath, A., Niedermann, B. and Haunert, J.-H., 2019.
Retrieving alpha-Shapes and Schematic Polygonal Ap-
proximations for Sets of Points within Queried Tempo-
ral Ranges. In: Advances in Geographic Information
Systems (ACM SIGSPATIAL’19), ACM, pp. 249–258.

Bonerath, A., Niedermann, B., Diederich, J., Orgeig, Y.,
Oehrlein, J. and Haunert, J., 2020. A time-windowed
data structure for spatial density maps. In: Proceedings
of 28th International Conference on Advances in Geo-
graphic Information Systems (SIGSPATIAL’20), ACM,
pp. 15–24.

Burigat, S. and Chittaro, L., 2005. Visualizing the re-
sults of interactive queries for geographic data on mo-
bile devices. In: Proceedings of 13th ACM International
Workshop on Geographic Information Systems (ACM-
GIS’05), ACM, pp. 277–284.

Chan, T. M. and Pratt, S., 2015. Time-windowed clos-
est pair. In: Canadian Conf. on Comput. Geom.
(CCCG’15).

Advances in Cartography and GIScience of the International Cartographic Association, 4, 1, 2023.
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-1-2023 | © Author(s) 2023. CC BY 4.0 License

8 of 8

(a) query times for the θ -structure and baseline approaches

(b) query times for θ∗-structure with and without max-order

Figure 10. Query Time Experiments for dataset Bonn-Extended.

Chan, T. M. and Pratt, S., 2016. Two approaches to build-
ing time-windowed geometric data structures. In: Symp.
on Comput. Geom. (SoCG’16), LIPIcs, Vol. 51, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 28:1–
28:15.

Chanchary, F. and Maheshwari, A., 2019. Time windowed
data structures for graphs. J. of Graph Algorithms and
Applications 23(2), pp. 191–226.

Chanchary, F., Maheshwari, A. and Smid, M., 2018. Win-
dow queries for problems on intersecting objects and
maximal points*. In: B. Panda and P. P. Goswami
(eds), Algorithms and Discrete Applied Mathematics,
Springer, Cham, pp. 199–213.

Chanchary, F., Maheshwari, A. and Smid, M., 2019.
Querying relational event graphs using colored range
searching data structures. Discrete Applied Mathemat-
ics.

Chazelle, B. and Guibas, L. J., 1986a. Fractional cascad-
ing: I. A data structuring technique. Algorithmica 1(1-
4), pp. 133–162.

Chazelle, B. and Guibas, L. J., 1986b. Fractional cascad-
ing: II. applications. Algorithmica 1(1-4), pp. 163–191.

de Berg, M., Cheong, O., van Kreveld, M. and Overmars,
M., 2008. Computational Geometry: Algorithms and
Applications. 3rd ed. edn, Springer.

Forsch, A., Dehbi, Y., Niedermann, B., Oehrlein, J.,
Rottmann, P. and Haunert, J.-H., 2021. Multimodal
travel-time maps with formally correct and schematic
isochrones. Transactions in GIS 25(6), pp. 3233–3256.

Hochheiser, H. and Shneiderman, B., 2004. Dynamic
query tools for time series data sets: Timebox widgets
for interactive exploration. Information Sciences 3(1),
pp. 1–18.

Kapler, T. and Wright, W., 2005. Geotime information
visualization. Information Visualization 4(2), pp. 136–
146.

Keim, D. A., Andrienko, G. L., Fekete, J., Görg, C.,
Kohlhammer, J. and Melançon, G., 2008. Visual an-
alytics: Definition, process, and challenges. In: In-
formation Visualization - Human-Centered Issues and
Perspectives, Lecture Notes in Computer Science, Vol.
4950, Springer, pp. 154–175.

Kraak, M.-J., 2003. Geovisualization illustrated. ISPRS
Journal of Photogrammetry and Remote Sensing 57(5-
6), pp. 390–399.

Robinson, A. C., Peuquet, D. J., Pezanowski, S., Hardisty,
F. A. and Swedberg, B., 2017. Design and evaluation
of a geovisual analytics system for uncovering patterns
in spatio-temporal event data. Cartography and Geo-
graphic Information Science 44(3), pp. 216–228.

Scheepens, R., Willems, N., van de Wetering, H., An-
drienko, G., Andrienko, N. and van Wijk, J. J., 2011.
Composite density maps for multivariate trajectories.
IEEE Trans. Vis. Comput. Graph. 17(12), pp. 2518–
2527.

Sun, G.-D., Wu, Y.-C., Liang, R.-H. and Liu, S.-X., 2013.
A survey of visual analytics techniques and applications:
State-of-the-art research and future challenges. J. of
Computer Science and Technology 28, pp. 852–867.

Tanin, E., Beigel, R. and Shneiderman, B., 1996. Incre-
mental data structures and algorithms for dynamic query
interfaces. SIGMOD Rec. 25(4), pp. 21–24.

Williams, M., Kuhn, W. and Painho, M., 2013. Interactive
maps: What we know and what we need to know. Jour-
nal of Spatial Information Science 6(1), pp. 59–115.

Zeng, W., Fu, C.-W., Arisona, S. M., Erath, A. and Qu, H.,
2014. Visualizing mobility of public transportation sys-
tem. IEEE transactions on visualization and computer
graphics 20(12), pp. 1833–1842.

Advances in Cartography and GIScience of the International Cartographic Association, 4, 1, 2023.
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-1-2023 | © Author(s) 2023. CC BY 4.0 License

	Introduction
	Related Work
	*-Structure
	Build a *-Structure
	Query a *-Structure
	Build a Good *-Structure

	Experiments
	Generalization
	More than One Color
	Application Scenarios

	Conclusion and Outlook
	Acknowledgements

