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Abstract: Deep neural networks (DNNs) in intelligent point cloud processing have achieved remarkable progress in 
recent years. Most existing methods and models were adopted on either outdoor or indoor scenes while very few previous 
studies were conducted in GNSS-denied environments. In this paper, we carried out a comparative study in semantic 
segmentation outputs using different DNNs in an underground parking lot dataset. Manually labeled indoor point cloud 
data were trained and tested using 7 different DNNs (e.g. PointNet, KPConv, FPConv, BAAF-Net, etc.). Our experiments 
demonstrated how well different DNNs perform in GNSS-denied environments with performance assessments in mIoU, 
Mean Accuracy (mAcc), Overall Accuracy (OA), as well as visualization outputs. The main contribution of this 
comparative study is to compare state-of-the-art DNN algorithms’ performance in semantic segmentation directly on the 
raw indoor mobile laser scanning (iMLS) data from a GNSS-denied underground parking lot and evaluate the 
effectiveness and potentials of different DNNs in underground 3D taskings. Draw upon that, which current algorithms 
are optimal and how future work in GNSS-denied environments can be inspired and implemented would be discussed. 
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1. Introduction 
Nowadays, with widespread and profound technological 
advancement in point cloud processing, the applications 
regarding navigation, autonomous parking, digital twins’ 
development as well as geodata management are getting 
mature (Li et al., 2021). Driven by rapid urbanization and 
city advancement, underground parking lots play as 
important roles in city daily commutes and urban space 
planning as they become great alternatives for relieving 
space and traffic burdens on the ground level. However, 
the existing iMLS datasets are not rich enough to stimulate 
large-scale Public Participatory GIS (PPGIS) 
collaboration like outdoor point cloud datasets. To support 
the development of autonomous driving and parking, there 
is an increasing demand for standardizing 3D point cloud 
management as well as indoor facility planning, especially 
in a GNSS-denied environment like underground parking 
lots. However, our current knowledge and understanding 
are insufficient to evaluate how well technologies can be 
used to support accurate planning and 3D geodata tasking 
in underground environments.  
 Due to the inherent nature of point clouds such as 
irregularity and lack of orders, automating the taskings and 
fitting optimized DNNs are essential for the development 
of point cloud processing. Since most traditional methods 

may encounter various barriers in point cloud processing 
(e.g., rule-based and threshold-based models), deep 
learning-based approaches, which have great potential in 
3D taskings, become the mainstream in the field of remote 
sensing. These barriers include but not limited to 
numerous human involvement errors, low automation 
level (inefficiency), poor level of noise reduction, etc; 
which can be improved by adopting different deep learning 
algorithms/ tools to automate the process to a great extent. 

Table 1. DNNs’ Semantic Segmentation Results on S3DIS, 
ModelNet40, and ScanNet (n: with Normal) 

DNNs 
OA (%) 

S3DIS ModelNet40 ScanNet 
PointNet 78.6 89.2 78.6 

PointNet++ 81.9 90.7/ 91.9n 81.0 
SPG 85.5 73.0 85.5 

KPConv - 79.1 68.0 
FPConv 88.3 68.9 - 

BAAF-Net 88.9 83.1 88.9 
Stratified 

Transformer 91.5 78.1 - 

 In this study, we examine the feasibility and accuracy 
level of semantic segmentation using seven popular 
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existing deep neural networks, including PointNet, 
PointNet++, SPG, KPConv, FPConv, BAAF-Net, and 
Stratified Transformer. 

 According to Table 1, the first six models are the 
traditional DNNs that were published before and around 
2021. The Stratified Transformer model (Lai et al., 2022) 
in the bottom is the only transformer-based DNN that has 
been used in our comparison study, which is a newly 
emerging model proposed around mid-2022. Even though 
there are many existing research studies related to 
semantic segmentation, many barriers and challenges 
emerging from indoor point cloud processing are still 
unsolved. Moreover, few previous studies attempted to 
directly detect and segment 3D objects in GNSS-denied 
indoor environments. Hence, inspirations are needed to be 
stimulated and elaborated to generate better solutions in 
this emerging field for digital twins and autonomous 
driving. Overall, the key contributions of this paper are 
fourfold: 

1. We performed semantic segmentation directly 
on point clouds collected from GNSS-denied 
environments using seven different state-of-the-
art DNNs. 

2. We conducted a comparative study based on the 
results of these DNN models. By comparing the 
mean Intersection over Union (mIoUs) and 
Overall Accuracy (OA) from the segmentation 
results, the accuracy of each class has been 
classified and discussed. 

3. Labelling and label re-assembly will be 
incorporated into our work before conducting 
semantic segmentation on this GNSS-denied 
underground parking lot dataset. 

4. Our experiments are expected to inspire future 
work in exploring the feasibility of optimizing 
models’ segmentation performance within 
GNSS-denied environments. 

 

2. Related Works 
Semantic segmentation of point clouds is one of the most 
essential 3D processing tasks for users to better understand 
the patterns and distinguish each class/feature’s global-
local relationships within a certain scene. Present methods 
of deep learning-based semantic segmentation usually 
achieve a global shape embedding based on some point-
wise pre-embedding operations along with an aggregation 
method. Previous works regarding deep learning-based 
semantic segmentation of point clouds have been reviewed 
and presented below. 

Point-based DNNs.  The point-based method directly 
works on the irregular points, adopting the point features 
and position information as the inputs, thus keeping the 
extraction results more intact and cutting down the loss of 
information compared to projection-based methods. 
PointNet (Qi et al., 2017) was designed for effective 
learning and processing the point-wise dispersed 
information and global features, using shared multi-layer 

perceptron (MLPs) and symmetrical pooling functions 
respectively. As a point-wise MLP method varied from 
PointNet, PointNet++ (Qi et al., 2017) captured local 
geometric patterns based on neighbouring feature pooling. 
In particular, PointNet++ established a hierarchical 
structure to group the points and aggregate features 
progressively. Point convolution methods tend to propose 
effective convolution operations to accommodate the 
inherent nature such as lack of order and irregularity of 
point clouds. Operations of KPConv (Thomas et al., 2019) 
convolution weights are located in Euclidean space by 
kernel points while BAAF-Net (Qiu, Anwar, & Barnes, 
2021) accesses the local information of large-scale point 
clouds via a bilateral structure. Moreover, different 
choices of the number of kernel points have contributed 
more flexibility to KPConv than normal convolutions with 
fixed grids. Besides, Lin et al. (2020) proposed a novel 
surface-style convolution operator namely FPConv to 
learn local flattening while omitting the intermediate 
representation transformation-like approaches based on 
3D grids or graphs. FPConv (Lin et al., 2020) has made 
significant improvements compared to previous surface-
style convolution-based methods. Graph-based semantic 
segmentation methods are also developed to extract the 
underlying shapes and geometric structures of 3D point 
clouds. As an attributed directed graph, SPG (Landrieu & 
Simonovsky, 2018) captured contextual structures of 
large-scale point clouds, implemented by a graph-based 
convolutional network.  

Transformer-Based DNNs. Transformer and attention-
based algorithms have inspired the development of 2D 
image recognition in recent years (Hu et al., 2019) and 
throw light on revolutions of 3D point cloud processing. 
Since point clouds are essential sets embedded irregularly 
in a continuous space, Point Transformer (Zhao et al., 
2021) attempted to build a transformer layer based on a 
vector self-attention to maximize local feature extraction. 
It used the subtraction relation to generate the attention 
weights and enhance position coding, but it also suffered 
from non-stationary upon multiple perturbations and 
information redundancy because of the elaborate point-
wise operations. Moreover, massive linear transformation 
layers may also lead to high computational and memory 
costs (Zhao et al., 2021). Point Cloud Transformer (Guo et 
al., 2021) adopted PointNet (Qi et al., 2017) architecture 
by replacing the shared MLP layers with standard 
transformer blocks based on the offset-attention 
mechanism. By enhancing input embedding with the 
farthest and neighbour point search, PCT (Guo et al., 2021) 
makes impressive progress in global feature aggregation in 
semantic segmentation. Although the transformer-based 
architectures (Lai et al., 2022, Zhao et al., 2021, Guo et al., 
2021) have achieved state-of-the-art performance in point 
cloud segmentation, the attempts at transformer-based 
point cloud processing remain limited, especially for 
GNSS-denied underground environments. 
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3. Dataset 

The dataset used in the study is a GNSS-denied point cloud 
set collected from an underground parking lot using a 
Backpack Laser Scanning (BLS) system (Gong et al., 
2021) by the GIM lab, University of Waterloo. For better 
visualization purposes, the entire dataset, which contains 
approximately 154,122,306 points, has been sliced into 5 
separate kits shown in Figure 1. There are 6 manually 
categorized classes included in this underground parking 
lot dataset: 

§ Ground (label 1): the ground surfaces with speed 
rubber bumps and manholes. 

§ Ceiling (label 2): ceilings and beams on the top of 
parking lots, as well as pipes. 

§ Column (label 3): all pillar and pole-like objects. 
§ Vehicle (label 4): includes sedans, SUVs, and trucks. 
§ Walls (label 5): walls at the boundary and dividing 

walls in the middle of the parking lot. 
§ Unclassified (label 6): unrecognizable objects. 
 

 
Figure 1. Overview of the Underground Parking Lot Dataset 

Label Re-assembly. Since labels in the raw data are 1-
indexed, the existing labels will be pre-processed to 0-
indexed. Besides, there are some legibility and formatting 
issues in the labels listed in Table 2. All the class labels 
highlighted in bold indicate the need for label alteration. 

Table 2. GNSS-denied Underground Data & Original Manually 
Label Fields (* refers to empty label) 

Kit 00, 01,02,04 Kit 03 Fixed 
Ground - 0 Ceiling - 1 Ground - 0 
Ceiling - 1 Ground - 2 Ceiling -1 
Column - 3 Column - 3 Column - 2 
Vehicle - 4 Vehicle - 4 Vehicle - 3 

Wall - 5 Wall - 5 Wall - 4 
Unclassified - 6 [                ]* Unclassified - 5 

4. Experiments 

Accuracy Assessment.  The metrics that we evaluated in 
the comparative study are overall accuracy (OA), mean 
accuracy (mAcc), mean intersection over union (mIoU), 
and IoU for each class respectively. All experiments were 
carried out on one desktop, the info for the machine is 
listed in Table 3: 

Table 3. Machine Configuration 
 Machine A 

Processor Intel (R) Xeon(R) Silver 4210 
GPU NVIDIA GeForce GTX 1080 Ti 
RAM 6 GB 

 To better compare and analyze the semantic 
segmentation results, visualization outputs have been 
generated along with these accuracy factors. In Figure 2, 
subsamples of the outputs for different DNNs have been 
demonstrated. The first column refers to the raw data 
presented in the RGB format while the second column 
includes the GT, which is the ground truth for training and 
testing the accuracy of each DNN’s performance. 
Subsamples of semantic segmentation outputs for different 
models were presented in the following columns. From the 
visualization outputs in Figure 2, the result for the SPG 
model is not ideal as the classification for labels “vehicle”, 
“ground”, and “column” are not clear. These have also 
been reflected in the accuracy measure metric in Figure 2 
(next page), as mIoU for the SPG is only about 42.82%. 
Besides, mIoUs for the PointNet, 75.74%, is relatively 
higher and the visualization is also more closely related to 
the representation in the GT. The mIoU for the KPConv is 
the highest among the three models shown in Figure 2, 
which is about 77.35%. 

A detailed comparison of the subsample’s visualization 
in PointNet vs. KPConv has been demonstrated in Figure 
3, and segmentation differences have been highlighted in 
green boxes. According to the comparison, the PointNet 

RGB GT SPG PointNet KPConv  

     

 

     

     
 mIoU 42.85% 75.74% 77.35%  

Figure 2. Visualization of Sub-sample of Semantic Segmentation of the Parking Lot Dataset 
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subsample’s errors are mainly in the “column”, where the 
upper column has been segmented as part of the “ceiling”. 
As for the KPConv model, it segmented part of the “wall” 
into the “ceiling” label. Combined with the quantitative 
result shown in Table 4, the performance accuracy for each 
DNN has been illustrated. In PointNet, the mIOU is 
75.74%. The lowest class IoU is “Column” at 72.2% while 
the highest class IoU is “Ground” at 97.8%. Compared to 
PointNet, the IoU in PointNet++ has increased by 8%, to 
83.79% in total. SPG has the lowest mIoU at 42.85%. 
Specifically, it was not effective in segmenting “ceiling” 
(42.16%) and “vehicle” (33.61%), which is the main factor 
that brought down the mIoU in the model. Both KPConv 
and FPConv models performed well in the segmentation 
of the underground parking lot as their mIoUs are 77.35% 
and 76.38% respectively with balanced class IoU for 
segmentation in each individual class. Besides, the 
PointNet++ model has the highest mIoU (83.79%) while 
the Stratified Transformer (ST) has the highest OA 
(98.00%) among all the DNNs. The mIoU for ST is only 
62.07% caused by the imbalanced classes. 

Discussion.  Overall, except for the SPG model, all of the 
other DNNs performed well in a GNSS-denied 
environment. Among all the class accuracy in Table 4, the 
“column” is the class that has the lowest mIoU. 
Performance for this class can be optimized by exploring 
the feasibility of combining different DNNs. For instance, 
combine PointNet++ with ST to enhance the class IoU in 

“column” since ST has an excellent performance in 
segmenting “column” at around 82.22% in accuracy.  

 Alternatively, since the OA in ST is the highest, future 
contributions can be elaborated on exploring the feasibility 
of transformer-based models in GNSS-denied 
environments by combining algorithms in different DNNs 
to optimize the accuracy in the “wall” class as it is the only 
imbalanced class (0%) in ST that result a low mIoU. 

 

5. Conclusion 

To sum up, we did the first comparative study in 
investigating the semantic segmentation performances of 
state-of-art DNNs within GNSS-denied environments. 
Based on the output, the mIoUs were mostly negatively 
affected by the accuracy in segmentation of “column” 
label. The PointNet++ has the highest mIoU (83.79%) with 
high and average IoUs for each class while the ST model 
gets the highest OA (98.00%) with great output in all class 
expect for “wall”. Based on the quantitative result, future 
works can contribute to proposing practice measures in 
refining the 3D taskings in GNSS-denied environments 
with optimized DNNs. Besides, future contributions 
should focus on low-level taskings to generate better-
quality underground datasets (e.g., through point cloud 
correction and completion). With an optimized and 
standardized model specifically designed for GNSS-

DNNs OA mAcc mIoU ground ceiling column vehicle wall unclassified 
PointNet  96.35 82.47 75.74 97.8 95.8 72.2 94.3 82.7 11.7 

PointNet++ 96.78 92.15 83.79 97.5 95.0 75.5 96.4 90.3 48.0 
SPG 86.97 50.90 42.85 93.27 42.16 87.05 33.61 1.00 0.00 

KPConv - - 77.35 97.50 95.73 79.33 97.20 93.31 1.03 
FPConv 96.62 - 76.38 97.23 94.65 76.48 96.04 89.87 4.03 

BAAF-Net - - 83.61 97.43 94.30 74.57 96.79 91.39 47.16 
Stratified 

Transformer 98.00 64.22 62.07 97.02 98.01 82.22 95.02 0.00 0.15 

Figure 3. Ground Truth vs. Visualization of PointNet & KPConv Subsample 

GT PointNet mIoU 

  

75.74% 

GT KPConv mIoU 

  

77.35 % 

Table 4. Quantitative Result of Segmentation Performance over 7 different DNNs in OA, mAcc, mIoU, and class IoUs 
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denied scenes, better solutions for the development of 
digital twins and autonomous driving can be applied in 
future. After that, we shall move to the next stage for 
exploring, popularizing, and commercializing 3D tasks in  
the industry for application in GNSS-denied environments 
such as an underground parking lot modelled in this study. 
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