
 

A spatio-temporal fusion method based on Landsat and 
MODIS normalized vegetation index data  

Xianghong Chea, *, Jiping Liua, Yong Wanga, Qing Sunb 

aResearch Center of Geospatial Big Data Application, Chinese Academy of Surveying and Mapping, chexh.15b@gmail.com, 
liujp@casm.ac.cn, wangy@casm.ac.cn 
b State Key Laboratory of Severe weather (LASW), Chinese Academy of Meteorological Science, sunqingmeteo@gmail.com 

* Corresponding author 
 

Abstract: Normalized difference vegetation index (NDVI) can simply and effectively reflect the growth status of plants, 
and has a linear relationship with vegetation coverage, thus it is an important indicator to identify vegetation growth status 
and coverage. However, the commonly used MODIS NDVI or Landsat NDVI cannot simultaneously achieve the high 
temporal and spatial resolution. To this end, we proposed a generic and automatic method to fuse MODIS and Landsat 
satellite vegetation index (NDVI) into daily high-resolution products which takes time series NDVI data from 
MODIS/Landsat as input, filters noise pixels, and generates high-resolution and high-frequency products through a fusion 
process of temporal-linearly interpolation to increase the temporal resolution and spatial filtering to alleviate the blocky 
artifacts from MODIS pixel border. The fused NDVI maps are visually compared to evaluate the performance of this 
method, and more quantitative assessment will be continued in the next step. This study can provide important support 
for large-scale long-term surface vegetation monitoring. 
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1. Introduction 
Satellite missions have been proved to be a popular and 
feasible tool for the Earth real-time observation at a large 
scale, but there were always trade-offs between spatial 
resolution and temporal frequency. One satellite sensor is 
not able to observe the Earth with high spatial resolution 
and high revisiting frequency. Optical sensors with coarse 
spatial resolution and daily orbits, for example, the 
Advanced Very-High-Resolution Radiometer (AVHRR), 
Moderate Resolution Imaging Spectroradiometer 
(MODIS), and Visible Infrared Imaging Radiometer Suite 
(VIIRS), can detect surface changes at the daily temporal 
resolution (Lunetta et al. 2006; Moon et al. 2019; Young 
and Wang 2001; Zhan et al. 2002). However, the relatively 
coarse (> 100 m) resolutions of these data limit their 
capability for monitoring small-patch surface features such 
as water and agricultural-related applications which 
require a few meters of spatial information. In the contrast, 
high or medium-resolution satellite data have a much finer 
spatial resolution (e.g. Landsat: 30 m, Sentinel-2: 10 m), 
but the sampling frequency is low (~multiple days to 
weeks), thus making it difficult to monitor the rapid and 
subtle change of land cover (Gao et al. 2017; Hansen et al. 
2013; Imhoff et al. 2010; Stone Jr and Rodgers 2001).  
In order to alleviate the above dilemma, spatial-temporal 
fusion methods of multi-source remote sensing data have 
achieved popular applications which can be divided into 
two categories. One is based on a linear spectral mixture 
model where the pixel values of low spatial resolution 
remote sensing data can be regarded as a linear 
combination of pixel values of medium and high spatial 
resolution data. Assuming that the pixel values of the high 

spatial resolution data with the same land cover type are 
the same, using the abundance matrix of each type 
obtained from the medium and high spatial resolution 
remote sensing data, and the least square method, the 
medium and high spatial resolution can be calculated from 
the low spatial resolution pixel reflectance (Cherchali et al. 
2000; Haertel and Shimabukuro 2005; Maselli et al. 1998; 
Oleson et al. 1995). However, based on the linear spectral 
mixture model, the calculated pixel values with medium 
and high spatial resolutions are only the average values of 
each land cover type, but not real pixel values which have 
limitations for surface vegetation with high spatial 
heterogeneity. Another is the spatial and temporal adaptive 
reflectance fusion model (STARFM) developed by Gao et 
al. (Gao et al. 2006) to avoid solving the linear spectral 
mixture model and consider the spatial variability of pixel 
values. Subsequent to the STARFM model, a series of 
improved methods have been successively proposed such 
as STAARCH (Spatial Temporal Adaptive Algorithm for 
mapping Reflectance Change) (Hilker et al. 2009), 
ESTARFM (Enhanced Spatial and Temporal Adaptive 
Reflectance Fusion Model) (Zhu et al. 2010), FSDAF 
(Flexible Spatiotemporal DAta Fusion) (Zhu et al. 2016).  
The above spatio-temporal data fusion method effectively 
improves the spatio-temporal resolution of images, but 
there are also limitations. For example, the input MODIS-
Landsat image pairs need to have better image quality and 
are closer to the target time. Affected by contaminated 
values such as clouds/cloud shadows, these images are 
difficult to use for fusion which is hard to achieve 
automatic and efficient fusion for large-scale long-term 
surface vegetation monitoring. Therefore, in this study, we 
present a generic and automatic method to fuse MODIS 
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and Landsat satellite vegetation index (NDVI) into daily 
high-resolution products. 

2. Data source 
We collected Landsat-8 OLI DN images (i.e. Landsat-5 
TM, Landsat-7 ETM+, Landsat-8 OLI) with 30m spatial 
resolution but the low temporal resolution (16-day revisit 
cycle) in the year of 2018, which were ordered and 
downloaded from USGS Earth Resources Observation and 
Science (EROS) Center Science Processing Architecture 
(ESPA). The Landsat images were processed to surface 
reflectance (SR) using Landsat Ecosystem Disturbance 
Adaptive Processing System (LEDAPS) for TM/ETM+ 
images and Landsat Surface Reflectance Code (LaSRC) 
for OLI images. Fmask was applied to identify cloud and 
cloud shadow in each Landsat image.  
MODIS MCD43A4 Nadir BRDF (Bidirectional 
Reflectance Distribution Function) -Adjusted SR (NBAR) 
products on 2018 were used, which have a more frequent 
revisit cycle (daily) but a coarse spatial resolution (~500 
m). MODIS MCD43A4 data have been adjusted and 
normalized to be nadir view at local solar noon time using 
the BRDF correction. The Landsat SR has not been BRDF-
corrected, but due to the small field of view in Landsat 
(±7.5° from nadir), Landsat can be largely regarded as in 
nadir view. Using MODIS/Landsat SR data, the vegetation 
index (Normalized Difference Vegetation Index, NDVI) 
was derived using Equation (1). In this study, we only fuse 
MODIS and Landsat NDVI, because the band ratio of 
NDVI can help to reduce some system uncertainties from 
the individual near-infrared and visible red band such as 
BRDF effect and sensor errors.  

                         (1) 

Where ρnir and ρred were SR of near-infrared and visible red 
bands from MODIS/Landsat data. 

3. Methodology 
We present a generic method to fuse MODIS and Landsat 
satellite vegetation index (NDVI) into daily high-
resolution products (Figure 1). This method takes time 
series NDVI data from MODIS/Landsat as input, filters 
noise pixels, and generates high-resolution and high-
frequency products through a fusion process. 

 
Figure 1. The flowchart of spatial-temporal fusion 

algorithm 

3.1 Pre-processing of MODIS/Landsat NDVI time 
series 
In this study, we assume that observed local minima of 
NDVI time series are often artifacts resulting from 
atmospheric effect or snow cover, particularly during 
winter months. The NDVI values less than 0.1 during 
winter months were filtered for MODIS/Landsat NDVI. 
For MODIS NDVI time-series with daily resolution, we 
utilized a medium method with a time step of 9 to reduce 
contaminated pixels. Compared to MODIS NDVI time 
series, the Landsat NDVI time series with 16-day 
resolution is much sparser, and the trend of NDVI time 
series will probably be shifted with the medium method. 
Therefore, a filter rule was designed for Landsat NDVI 
data. 
Specifically, the quality layer of Landsat SR dataset was 
used to mask out the cloud, snow/ice and water pixels, and 
then retrieved masked NDVI. However, there existed 
some undetected-contaminated pixels. Based on the 
assumption, the local minima (NDVIi) of Landsat NDVI 
time series were detected as artifacts if it applied the 
equation (2-3). 

                              (2) 

   (3) 

Where, NDVIi+j indicated four neighbouring NDVI values 
centered on NDVIi (j = -2, -1, 1 and 2). AVERAGE is a 
function calculating the average value of neighbouring 
NDVI values, and STD is corresponding standard 
deviation. 

3.2 Temporal-linearly interpolation 
The goal of our fusion framework is to fuse Landsat and 
MODIS NDVI data into images with both high-resolution 
spatial information and frequent temporal coverage for n 
dates Ti (i =1, 2, …, n), and there are k matching pairs of 
Landsat and MODIS images that acquired on the same 
dates Tj (j =1, 2, …, k) among the n dates. MODIS NDVI 
pixels were aligned and super-sampled to Landsat 
projection and pixel footprint to produce each Landsat-
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MODIS matching pair. The MODIS data M(x, y, Ti) is also 
available for each date Ti (i =1, 2, …, n) where we will 
predict the fine-resolution image. 
Specifically, consider one Landsat image L and one 
MODIS image M that are acquired on the same date Tj, the 
relationship between the Landsat image and the MODIS 
image can be modelled as 
                              
(4) 
Where (x, y) is the location of the aligned pixel of Landsat 
and MODIS data, Tj is the acquisition date for Landsat and 
MODIS data, andΔ(x, y, Tj) is the difference between 
Landsat and MODIS data of position (x, y).  
Suppose we aim to predict a fine-resolution image on date 
tp where only the MODIS data M(x, y, Tp) is available but 
the Landsat data is unknown. The predicted image I (x, y, 
Tp) can be represented as Equation (4), where Δ(x, y, Tp) 
is the difference between the MODIS image M and the 
predicted fine-resolution image L of position (x, y) at date 
Tp. To obtain the difference Δ(x, y, Tp) of each position (x, 
y) at date Tp, we integrate all the k available matching pairs 
of Landsat and MODIS data on dates from T1 to Tk, and 
calculate the difference (Δ(x, y, Tj)) between Landsat and 
MODIS data for each date Tj (j =1, …, k). We then linearly 
interpolate the difference ϵ(x, y, Tj) into each date Ti, and 
hence obtain the estimated difference Δ(x, y, Tp) for all 
positions (x, y) at date Tp. To obtain the prediction of the 
fine-resolution image I (x, y, Tp), we use MODIS data at 
date Tp to further correct the spatial information encoded 
in Δ(x, y, Tp) with Equation (5). This step can be thought 
as an adjustment step that incorporates the high-frequency 
temporal patterns provided by MODIS data.  

𝐼"𝑥, 𝑦, 𝑇!' = 𝑀"𝑥, 𝑦, 𝑇!' + Δ"x, y, 𝑇!'                   (5) 
 

Δ"x, y, 𝑇!' = Δ(x, y, 𝑇"#) +
(%!"&%!#)∗()(*,,,%!")&)(*,,,%!#)

%!"&%!#
                                     

(6) 
Where Tp  is the predicted date.  Ti1 and Ti2  are the before 
and after Tp dates where MODIS and Landsat NDVI  
exist. Δ(x, y, 𝑇"-) and Δ(x, y, 𝑇"#) can be derived with 
Equation (4).  

3.3 Spatial filtering (SF) 
The inconsistency between the spatial resolutions of 
MODIS and Landsat NDVI image means that the 
interpolation prediction is dominated by blocky artifacts 
which correspond with a MODIS pixel. To deal with the 
blocky artifacts problem in the interpolation prediction, SF 
is considered in the second step. In this study, the similar 
neighboring pixels in a local window were used to remove 
blocky artifacts. 
Since there already exist blocky artifacts in the 
interpolation prediction, it is inappropriate to use the 
predicted image at unknown t2 to search for similar 
neighbouring pixels. Alternatively, the clear Landsat 
NDVI observation at the closest and known t1 was used, 
based on the assumption of stable land cover boundaries 
(or very few changes in boundaries) occurring from t1 to 

t2. The NDVI difference between a neighbouring pixel at 
xi and the center pixel at x0 is calculated as 

   
(5) 
In the local window with w by w fine pixels, the first n 
pixels with smallest NDVId (excluding the center pixel 
itself) were identified as similar neighbors and were 
selected for SF.  If the similar pixels for the target 
interpolated pixel are not found in the Landsat observation 
at t1, we will find the next closest Landsat observation, and 
this process will stop until the similar pixels are detected 
on the Landsat observation at tj or all of Landsat 
observations are looped. Using the trial and error method, 
w and n were set to 3 and 4 respectively. For each 
interpolated 30 m pixel at t2, the SF prediction was 
determined as the linear combination of the interpolation 
prediction of similar neighbouring pixels.        

                   (6) 

Where Wi is a weight determined according to the spatial 
distance between the neighbouring and center pixels. tj is 
the acquisition date of closed Landsat observation that is 
able to detect similar pixels for interpolated pixels. Based 
on spatial dependence, spatially closer pixels are more 
likely to have similar NDVI to the center pixel and, thus, 
receive larger weights 

                                            (7) 

                                 (8) 

The distance di needs to be constrained to an appropriate 
range to exert reasonable influence on the weight Wi. 
Thus, 1 and w / 2 are used in Equation (8) and di ranges 
from 1 to 1 +  correspondingly. With the filtering 
scheme in Equation (6), the blocky artifacts in the 
interpolation prediction can be alleviated. 

4. Results and discussion 
In order to evaluate the performance of a proposed method, 
we selected a test area at the p034r032 for the visual 
comparison. Figure 2(a) is the high-resolution google map, 
and Figure 2(b) and 2(c) are the known Landsat 8 NDVI 
map at 30m resolution on August 6 and 22 2018, 
respectively. Figure (d) is the MCD43A4 NDVI map on 
August 12, 2022 used as a reference to generate the fused 
30m NDVI map. Figure 2(e) is the intermediate temporal-
linearly interpolated 30m NDVI map, and Figure 2(f) is the 
final fused 30m NDVI map with spatial filtering on August 
12, 2022. It is found that the fused NDVI map has similar 
values distribution as the referenced MODIS NDVI map, 
but the spatial resolution is significantly improved, and 
bad pixels from MODIS NDVI can be restored. The 
blocky artifacts cannot be visually distinguished on the 
whole test area.   
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Figure 2. The spatio-temporal fusion map on August 12, 
2018 for test area of the p034r032 tile (white pixels is the 
bad pixels from MODIS SR)  
Figure 3 and 4 were used to display the blocky artifacts 
which were two zoom-in areas from Figure 2. Since there 
was an obvious spatial resolution difference between the 
500m MODIS NDVI and 30m Landsat NDVI, the blocky 
artifacts tend to exist along the border of one MODIS pixel 
as Figure 3(e) and Figure 4(e). Through spatial filtering, 
these artifacts were eliminated to make the region more 
homogenous, which demonstrated the necessity of spatial 
filtering for wall-to-wall fused map. 

 
Figure 3. Same as Figure 2 but for the Zoom 1 area 

 
Figure 4. Same as Figure 2 but for the Zoom 2 area 

In this study, we only visually evaluated the fused results 
because the observed 30m NDVI non-exist for the fused 
date. In the next step, we will concentrate on the 
quantitative assessment. Sentinel-2 data can be used as the 
observation NDVI to compare with the fused NDVI 
(Drusch et al. 2012). Furthermore, we can use the 
commonly-used fusion method (i.e., STARFM) (Gao et al. 

2006) as a benchmark to evaluate the performance of this 
proposed method. In addition, this study tried to select the 
clear-sky Landsat data, but the invalid long gap of time 
series from Landsat NDVI can bring in the uncertainty for 
the temporal-linearly interpolation procedure which 
should be filled before the interpolation (Luo et al. 2018; 
Yan and Roy 2020). In this way, the relatively precise 
intermediate fused map can be produced to help improve 
the fusion accuracy. 

5. Conclusions 
Considering the limitation of the high input requirements 
of the existing spatio-temporal fusion method for data 
fusion, we proposed an automatic spatiotemporal fusion 
method of surface NDVI data through temporal linear 
interpolation and spatial filtering processing to obtain both 
high spatial and temporal resolution NDVI data. Above all, 
after filtering the Landsat NDVI data with FMASK, the 
noise secondary filtering based on adjacent NDVI 
observations and the noise filtering of the MODIS NDVI 
median are designed, which is crucial for NDVI spatio-
temporal fusion input, and the high quality image pairs are 
not needed. This study can provide technical reference for 
large-scale long-term surface vegetation monitoring. 
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