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Abstract: Airports are not only important infrastructure for both civil and military use but also have significant impacts 
on socio-economic development and the built-up environment. OpenStreetMap (OSM) can be an essential data source 
for acquiring various airport elements, but few studies have investigated data quality. To fill this gap, this study aims to 
assess the quality (especially completeness) of airport data in OSM by comparing it with locations of airports acquired 
from the OurAirports platform. More precisely, the three different types (large, medium, and small) and the four 
different elements (runway, taxiway, apron, and terminal) of airports are assessed for over 40,000 airports worldwide. 
Results show that completeness varies depending on types, elements, and geographical regions. Specifically, 1) almost 
all large airports are complete; most medium airports are also complete; but most small airports are not complete. 2) 
The runway element is much more complete than the terminal element. 3) In most cases, completeness is relatively high 
in India, China, and Northern Africa but relatively low in Canada, the United States, Russia, and Australia, where the 
total number of airports is much larger. We conclude that most large and medium airports in OSM have been mapped 
well. The reasons for incomplete airport data in OSM and potential applications of OSM airport data are also discussed. 
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1. Introduction 
An airport, also known as an aerodrome, is a location for 
the takeoff and landing of aircraft and is considered an 
important infrastructure for both civil and military use 
(Fernandes et al. 2014; Sennaroglu and Celebi 2018). 
Many studies have focused on airports because they not 
only promote socio-economic development (Freestone 
and Baker 2011; Fernandes et al. 2014; Sun et al. 2020) 
and the tourism industry (Seetanah et al. 2020), but also 
affect noise pollution (Fajersztajn et al. 2019; Zheng et al. 
2020) and air quality (Unal et al. 2005; Zhu et al. 2011; 
Hudda et al. 2020) in the built-up environment. 
Additionally, an airport typically has two major elements: 
the airfield and the terminal (Rodrigue 2020). The airfield 
can be further divided into runway, taxiway, and apron. 
Acquiring these elements is essential for the design of 
new airports and the reconstruction of existing ones 
(Foster et al. 1995; Alexandre et al. 2002; Kazda and 
Caves 2015; Ke and Bin 2020). Consequently, obtaining 
airport data is necessary for various applications. 
 
Most of existing studies have used remote sensing or 
satellite data to detect/extract an airport and its elements 
(e.g., runway, taxiway and apron), because remote 
sensing is a well-known technique to identify objects on 
the Earth's surface. For instance, Jackson et al. (2015) 
used very high resolution satellite data (QuickBird, with a 
resolution of 61cm) to extract a runway's area precisely. 
Xu et al. (2018) proposed an airport detection method 
based on convolutional neural networks (CNN). The 
CNN has also been used by other researchers (Chen et al. 

2018; Li et al. 2019; Yin et al. 2020) to automatically 
detect airports from high-resolution satellite data. 
However, the use of remote sensing data involves a series 
of pre-processing steps (including image calibration, 
feature detection and data classification), most of which 
are still technical challenges for most planners and 
designers. On the other hand, high-resolution (e.g., less 
than 1m) remote sensing data are still not available for 
the public, thus it is necessary to employ other open data 
source as supplements for acquiring airport data.  
 
Along with the development of Web2.0 technique, open 
data edited and provided by global volunteers (also 
known as volunteered geographical information or VGI, 
Goodchild 2007) have also been viewed as potential data 
source for acquiring airport data. OurAirports 
(https://ourairports.com/) is such a VGI platform, which 
has provided the location information (including 
longitude and latitude) of more than 70,000 airports 
worldwide. OpenStreetMap (OSM) is another well-
known and widely-used VGI platform 
(https://www.openhistoricalmap.org/), which has been 
edited by almost eight million global volunteers. More 
important, from the OSM platform, it is possible to 
acquire various elements (e.g., runway, taxiway, apron 
and terminal) of an airport, in terms of both geometric 
and thematic information. As an example, Figure 1 shows 
a screenshot of the Hannover International Airport in 
OSM, from which the major elements (including runway, 
taxiway, apron and terminal) of this airport can be 
identified. Moreover, the corresponding (geometric) data 
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can also be freely acquired with much less technical 
challenges. 

 
Figure 1. A screenshot of the Hannover International Airport in 
OSM.  

 
Despite of the above advantages, the data (especially 
OSM) may unavoidably have the quality issue, because 
they are provided by volunteers from different countries 
and educational backgrounds (Arsanjani and Bakillah 
2015). Extensive studies have assessed OSM data quality 
from various quality measures (Senaratne et al. 2017), 
e.g., positional accuracy (Brovelli et al. 2018), semantic 
accuracy (Zhou et al. 2019; Wang et al. 2020), 
completeness (Zhou et al. 2018; Zhang et al. 2022) and 
logical consistency (Sehra et al. 2020; Zacharopoulou et 
al. 2021), which were defined by the International 
Standard Organization (ISO 2003) and have been widely 
used. Among these different measures, the completeness, 
measuring how well an region has been mapped, has 
received wide attention because the other quality 
measures should be assessed based on existing data. 
Extensive research work can also be classified according 
to different map features that have been assessed. For 
instance, lots of work has been focused on assessing 
OSM data quality in terms of roads (Girre and Touya 
2010; Zhou and Tian 2018; Lin and Zhou 2020), 
buildings (Fan et al. 2014; Zhou 2018; Zhang et al. 
2022), points of interest (POI, Touya et al. 2017; Yeow et 
al. 2021), land-use and land-cover (Johnson and Lizuka 
2016; Zhou et al. 2019; Wang et al. 2020). Despite of 
these effects, to the best of our knowledge, there still is a 
lack of research work on assessing OSM data quality in 
terms of the feature-airport, which is the main purpose of 
our study. 
 
Specifically, this study has two main contributions: 
First, the completeness of more than 4,000 airports in 
OSM has been investigated at a global scale. This was 
achieved by comparing with another open dataset 
(OurAirports).  
Second, these airports were assessed at two different 
scales, i.e., airport-based (each airport was assessed) and 
national-based (all the airports of a country was 
assessed). Moreover, such an assessment was carried out 
by taking not only the different types (Large, Median and 
Small) of airports, but also the different elements 

(runway, taxiway, apron and terminal) of them into 
consideration.  
The paper is structured as follows: Section 2 describes the 
acquired data, the approaches for assessing the 
completeness of airports worldwide, and also the 
approaches for analyzing the results; Section 3 reports the 
results and analyses; Section 4 and 5 are discussion and 
conclusion, respectively.  

2. Data and Approach 
2.1 Data 
Two categories of datasets (OSM and OurAirports) were 
involved for the analysis. Specifically, the location data 
of airports worldwide were acquired from OurAirports, 
and they were used as references for comparing with 
OSM data. 
● OSM Data: The data were freely acquired from the 
third-party platform on February 2022. This platform has 
provided OSM datasets of almost all the countries and 
regions in the world. Moreover, different map features, 
e.g., roads, railways, buildings, land-use and land-cover, 
have been included in these datasets. Moreover, an OSM 
tag, consisting of a key and a value, is used to describe 
the attribute of an object. As an example, if an OSM 
object tagged with ''aeroway = terminal'', it means that 
this object is the terminal of an airport. Specifically, we 
extracted OSM objects with the tags related to the four 
major elements, i.e., runway, taxiway, apron and terminal. 
The corresponding tags are also listed in Table 1. It 
should be noted that the two tags "aeroway = runway' 
'and ''aeroway = taxiway'' may be represented by not only 
line but also polygon features, both of which were 
extracted for the analysis.  
● Reference data: The reference data were acquired 
from OurAirports. Since February 2022, this platform has 
provided the locations of 71,611 airports across the 
global. Moreover, these airports have been classified into 
seven different types, including (1) Large airport, (2) 
Medium airport, (3) Small airport, (4) Helicopter, (5) 
Seaplane, (6) Closed and (7) Balloonport (Table 2). 
However, the three types of airports (Helicopter, Seaplane 
and Balloonport) normally do not include runway, 
taxiway and terminal; and most of the airports classified 
as the type-Closed were belonged to the above three 
types. Therefore, this study only involved the other three 
types (i.e., Large airport, Medium airport and Small 
airport) into the analysis. Specifically, a total of 43,647 
airports worldwide have been found from the reference 
data. To verify the accuracy of reference data for airports, 
we randomly selected 10% of the total number of large, 
medium, and small airports and combined them with 
Google images for visual interpretation. The accuracy 
rate was 100% for large and medium airports and 82% 
for small airports. This data can be used as a reference to 
assess the quality of OSM airport data. 
 
Furthermore, Figure 2 shows the spatial pattern of 
airports distributed across the globe. It can be seen from 
this figure that: there are a total of 247 countries and 
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regions that have at least an airport. Six out of these 
countries and regions have a relatively large number (＞
1,000) of airports, and the United States has the largest 
number (＞10,000) of airports. 
 
Major elements of 
an airport OSM Tag Data Type 

Runway Aeroway=runway Line/Polygon 
Taxiway Aeroway=taxiway Line/Polygon 
Apron Aeroway=apron Polygon 
Terminal Aeroway=terminal Polygon 
Table 1 The OSM tags for the major elements of an airport. 

Type Total Number 
Large airport* 448 
Medium airport* 4,745 
Small airport* 38,453 
Helicopter 17,846 
Seaplane 1,102 
Closed 8,830 
Balloonport 36 
All 71,461 

Table 2 The statistic of airport data in OurAirports according to 
different types. 
*denotes the types of airports that have been involved into the 
analysis. 

 
Figure 2 The spatial pattern of airports across the globe 

2.2 Approaches 
To the best of our knowledge, there is a lack of 
approaches for the quality assessment of airport data in 
OSM. Thus a simple approach was designed. The tenet of 
our approach generally includes three steps. First, the 
correspondence between OSM and reference airport 
datasets were established. Second, the completeness of 
OSM dataset was assessed. Third, the assessment results 
were analyzed.  
2.2.1 Establishing correspondence between OSM and 
reference datasets 
The OSM and reference datasets were represented using 
different features. To be specific, the OSM dataset was 
represented using lines and/or polygons, but the reference 
dataset was represented using points. Thus it is necessary 
to first establish the correspondence between these two 
datasets, in order to determine which lines and/or 
polygons in the OSM dataset are corresponded to the 
corresponding point or location of an airport in the 
reference dataset. Theoretically, it may be possible to 

establish such a correspondence according to the name of 
each airport. However, there are a lack of names for most 
OSM data. Therefore, a buffer approach was proposed to 
establishing such a correspondence. The specific steps are 
listed as follows: 
● Step 1: Create a buffer around the location of each 
airport in the reference dataset. According to the 
International Standards of Aerodrome Design and 
Operations (International Civil Aviation Organization 
2009), the size of an airport depends much on the length 
of its runway(s), which may vary from 1800 to 2500m. 
For extreme large airports (e.g., Denver International 
Airport, 
https://www.flydenver.com/about/media_center/den_over
view), the length of runway may be close to 5000m. 
Therefore, in our study, the 5000m was empirically 
determined as a threshold to create the buffer.  
● Step 2: For each buffer, we searched from the OSM 
dataset to identify that whether there is an object that 
located inside the buffer. If this is the case, we identified 
that there is at least an OSM object corresponded to this 
buffer and its corresponding airport. Otherwise. there is 
no OSM object corresponded to this buffer. 
2.2.2 Assessment of Completeness 
The completeness of 43,647 airports worldwide was 
assessed at two different scales i.e., called airport-based 
assessment and national-based assessment.  
(1) Airport-based assessment 
The airport-based assessment denotes that the 
completeness of each airport was assessed. For each 
airport, the four different elements (runway, taxiway, 
apron and terminal) were analyzed individually. Each 
element of an airport was determined as 'complete', if 
there is at least an OSM object that not only corresponded 
to this airport, but also tagged with the corresponding 
element.  
(2) National-based assessment 
The completeness of all airports in each country was also 
assessed, in terms of different elements. For each country, 
the completeness of an element was defined as follows: 
                        C(e) = !!"#(#)

!$%&
× 100%                       (1) 

where, C(e) denotes the completeness of all airports (in a 
country) for a certain element e; Nosm(e) denotes the total 
number of airports that identified as 'complete' in terms of 
the element e; Nref denotes the total number of airports in 
a country.  
2.2.3 Analysis of Results 
As the completeness may vary with different airport types 
(large, medium and small), the 43,647 airports worldwide 
were analyzed according to the three types, respectively. 
To be specific 
● First of all, the completeness of OSM airport data was 
visualized on a map, using both the airport-based and 
national-based assessments. For each assessment, the 
three different types (large, medium and small) and the 
four different elements (runway, taxiway, apron and 
terminal) of an airport was analyzed, respectively.  
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● Then, the completeness was quantitatively analyzed 
using the box plot, in terms of different geographical 
regions (African, Asia, Europe, North America, Oceania 
and South America). The purpose of this analysis is to 
investigate whether the completeness varies with 
different geographical regions. 
● Lastly, some typical airports were also picked up and 
overlapped with Google Earth images, in order to explain 
why they have been mapped well or not. In this analysis, 
different types and elements were also considered 
respectively. 

3. Results and Analyses 
3.1  Results of spatial patterns 
First of all, Figures 3-4 visualize the completeness of 
OSM airport data across the globe, in terms of two scales 
(airport-based and nation-based assessments), three types 
(large, medium, and small), and four elements (runway, 
taxiway, apron, and terminal). For the airport-based 
assessment, all 43,647 airports were divided into two 
classes: 'complete' (there is at least one OSM object 
tagged with the corresponding element) and 'incomplete' 
(there are no OSM objects tagged with the corresponding 
element). For the nation-based assessment, the 
completeness of each country was divided into five 
classes, ranging from 0% to 100% with an interval of 
20%. 
 
 Figures 3-4 show that,  
1) Airport-based: The four major elements (runway, 
taxiway, apron, and terminal) of each large airport are 
almost complete. In particular, the runway element is 
complete for all large airports. For the other three 
elements, data is lacking for no more than eight out of the 
448 large airports. Most of the four elements have been 
mapped for medium airports, with completeness rates of 
99.3%, 94.3%, 89.1%, and 65.4% for runway, taxiway, 
apron, and terminal elements, respectively. However, 
compared to large airports, there are many more medium 
airports (1,641) that have not been mapped with some of 
these elements. In particular, there are many more 
medium airports that have not been mapped with the 
terminal element (1,212) compared to the runway 
element (34). The completeness patterns for small 
airports are quite different from those of large and 
medium airports. The completeness of the four elements 
is much lower for most small airports, with completeness 
rates of only 74.8%, 28.3%, 22.3%, and 5.7% for runway, 
taxiway, apron, and terminal elements, respectively. 
Relatively, the completeness (74.8%) for the runway 
element is much higher than that (5.7%) for the terminal 
element. This is probably because almost all airports have 
a runway, but not all of them have a terminal. 
 
2) National-based: The completeness of each element is 
almost 100% for the 160 countries and regions with large 
airport(s). Nevertheless, there is a lack of the terminal 
element for some large airports in Saudi Arabia, 
Tanzania, and Papua New Guinea. For medium airports, 

the completeness of the runway element is close to 100% 
for all 228 countries and regions with medium airports, 
except for the South Pole region. However, the 
completeness of the terminal element is relatively low 
(e.g., <60%) for some countries and regions such as 
Canada (42.5%), Germany (54.7%), the United Kingdom 
(55.2%), Russia (55.7%), the United States (56.3%), and 
Australia (59.1%). Similar cases can also be found for 
small airports. That is, for most countries and regions, the 
completeness is relatively high (e.g., >60%) in terms of 
the runway element, but much lower (e.g., <40%) for the 
other three elements. Nevertheless, there is relatively 
higher completeness in some countries and regions (e.g., 
Northern Africa, Western Asia, and India). This may be 
because these countries and regions have a relatively 
small total number of airports (e.g., <500, as shown in 
Figure 2), making it easier for OSM volunteers to map 
them accurately. 

 
Figure 3 The OSM completeness of airports across the globe, in 
terms of the four different elements (runway, taxiway, apron and 
terminal) in the airport-based assessments. 
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Figure 4 The OSM completeness of medium airports across the 
globe, in terms of the four different elements (runway, taxiway, 
apron and terminal) in the national-based assessments 

Moreover, Figure 5 displays the box plots of OSM airport 
completeness for different geographical regions. For each 
geographical region, the completeness of different 
countries was statistically analyzed using box plots, in 
terms of three types and four elements. We can observe 
from this figure that: First, all four elements are almost 
complete for large airports. Second, most of these 
elements have still been mapped for medium airports, 
although they exhibit relatively lower completeness. 
Third, in terms of all elements, there is much lower 
completeness for small airports, although there is a 
relatively high completeness for the runway element. 
These results are consistent with those found in Figures 5. 

 
Figure 5 Box plots of OSM airport completeness of six different 
geographical regions (African, Asia, Europe, North America, 
Oceania and South America), in terms of the three types (large, 
medium and small) and the four elements (runway, taxiway, 
apron and terminal). 

Furthermore, some airport data in OSM were selected, 
and they were overlaid with Google Earth images (Figure 
6). This type of analysis may be beneficial for us to 

understand why some airports have not been mapped. 
First of all, there is a lack of apron and terminal data for 
Jeju International Airport (Figure 6a) and Peterborough 
Municipal Airport (Figure 6b); however, these elements 
can be clearly interpreted from Google Earth images. In 
contrast, in Figures 6c and 6d, some elements (e.g., 
taxiway) have not been mapped well, probably because 
they cannot be interpreted from the satellite images. In 
Figures 6e and 6f, we cannot even interpret any element 
of an airport from the corresponding Google Earth image. 
Thus, the locations of these airports provided by 
OurAirports are likely incorrect.  

 
Figure 6 Overlapping the OSM data of six incomplete airports 
with corresponding Google Earth images. 

4. Discussion 
This section will discuss not only the potential 
applications of OSM airport data but also the limitations 
of this study. 
4.1 Application 
This purpose of this study is to investigate the data 
quality (especially the completeness) of airport data in 
OSM. We found that most of large and medium airports 
have been mapped well with all the four elements 
(runway, taxiway, apron and terminal), although there is a 
lack of OSM data for most small airports. The OSM 
(airport) data may be used in several potential 
applications. 
 

Advances in Cartography and GIScience of the International Cartographic Association, 4, 3, 2023. 
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent 
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-3-2023 | © Author(s) 2023. CC BY 4.0 License



6 of 8 

First, OSM data can be used for airport planning and 
design. Although the layouts of various elements (e.g., 
runway and terminal) may vary among different airports, 
it is possible to classify them into some common 
categories (Johnson et al. 2016; Rodrigue 2020). The 
major elements of an airport can be freely acquired from 
OSM data, which are also nearly complete, especially for 
the 448 large airports and the 4,745 medium airports. 
With such a large number of samples, it may be possible 
for planners and designers to refer to existing layouts 
when designing a new airport or reconstructing an 
existing airport (Sumathi and Selvam 2018). 
 
Secondly, the OSM data may be used as training samples 
for airport detection and/or identification. Previous 
studies have reported that machine learning methods, 
such as convolutional neural networks, are useful for 
detecting and/or identifying airports from remote sensing 
images (Xu et al., 2018; Chen et al., 2018). However, 
using machine learning methods requires a large number 
of samples for training. The OSM data can provide a vast 
number of airport elements from around the world. More 
importantly, these data can be used as training samples 
for detecting and/or identifying airports that have not 
been mapped by OSM volunteers.  

 
Thirdly, previous studies have reported on the impact of 
airports on noise pollution and air quality (Unal et al., 
2005; Zhu et al., 2011; Fajersztajn et al., 2019; Hudda et 
al., 2020). To conduct this type of analysis, detailed data 
on various airport elements, such as runways, taxiways, 
and aprons, are needed. As far as we know, OSM data 
may be the only open-source option for acquiring such 
information. Additionally, airport data in OSM can be 
combined with other data sources, such as population and 
road networks, to study airport ground accessibility (Sun 
et al., 2020). Thus, airport data in OSM can be used not 
only to improve the built environment, such as noise 
pollution and air quality but also to promote socio-
economic development, such as airport ground 
accessibility.  
4.2 Limitations 
Despite the airport data in OSM have a lot of potential 
applications, this study also has several limitations. 
 
First of all, we acquired the location data of airports from 
the OurAirports platform as references, which were then 
compared with OSM data. This platform has freely 
provided more than 70,000 airports worldwide. However, 
the data in OurAirports were provided by global 
volunteers, and thus they may contain errors. For 
instance, we found in this study that some airports lack 
OSM data (e.g., Figure 6e), probably because the 
reference locations of these airports are incorrect. 
Additionally, open airport data represented by lines 
and/or polygons are still not available, so we had to use 
the point data in OurAirports as references for the 
analysis. Therefore, we could only investigate whether an 
element had been mapped or not, rather than how many 

of these elements had been mapped. Thus, even airports 
identified as 'complete' may still lack OSM data. 
 
Secondly, in addition to completeness, other quality 
measures such as positional accuracy, attribute accuracy, 
and logical consistency are also essential for assessing the 
quality of open airport data. Therefore, in further work, it 
would be worthwhile to assess the quality of OSM airport 
data in terms of different quality measures. 
 
Last but not least, in addition to the four elements 
studied, there are other elements of an airport (e.g., 
hangars and helipads, 
https://wiki.openstreetmap.org/wiki/Aeroways) that can 
be acquired from OSM data. However, these elements are 
either difficult to interpret from Google Earth images or 
not major elements of an airport, and thus they were not 
considered in our study. In future work, it would also be 
interesting to assess OSM data quality in terms of other 
elements of an airport.   

5. Conclusion 
The purpose of this study is to assess the quality, 
particularly the completeness, of airport data in OSM. 
This is achieved by comparing it with location data of 
airports acquired from another platform, OurAirports. 
First, the four different elements of airports (runway, 
taxiway, apron, and terminal) were extracted from OSM 
data. Then, these elements were matched with the 
location data of airports in OurAirports using buffer 
analysis. Finally, the airports' various elements in OSM 
were assessed. More than 40,000 airports across the globe 
were analyzed, and they were categorized into three 
different types: large, medium, and small airports. The 
assessment was carried out at two different scales: 
airport-based and national-based.Results showed that: 
 
Firstly, the completeness of OSM airport data depends on 
various types. Specifically, all 448 large airports are 
almost complete for all four elements. Most of the 4,745 
medium airports are complete, especially for the three 
elements (runway, taxiway, and apron). However, there is 
a lack of OSM data for most small airports, in terms of 
various elements. This is probably because large airports 
have received much attention from OSM volunteers, and 
thus they have been mapped better than medium and 
small airports. 
 
Secondly, in terms of the four different elements, the 
completeness is relatively high for the element "runway," 
but relatively low for the element "terminal." This is 
because almost all airports have at least one runway, but 
not all of them have terminal(s). 
 
Thirdly, the completeness also varies with different 
geographical regions. The completeness is relatively high 
in Northern Africa, Eastern Asia, and India, probably 
because there is a relatively small number of airports in 
these countries and regions. On the contrary, the 
completeness is relatively low in Canada, the United 
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States, Russia, Australia, and Southern Africa, probably 
because there is a relatively large number of airports, 
which may require more effort from OSM volunteers to 
map well. 
 
In addition, the lack of some or all elements of an airport 
may be attributed to different reasons, such as the data 
not being mapped by OSM volunteers, or a lack of 
elements (e.g., taxiway, apron, and/or terminal) for some 
airports. Furthermore, the location data of a reference 
airport may also be incorrect. 
 
We have also discussed the potential applications of OSM 
airport data and the limitations of this study. Therefore, in 
future work, some points may be considered to improve 
our study. Firstly, the quality of airport data in OSM may 
be assessed using other quality measures (e.g., positional 
accuracy, attribute accuracy, and logical consistency). 
Secondly, the data quality of other elements of an airport 
may also be analyzed. Finally, it is interesting to 
investigate how to use airport data in OSM for various 
applications. 
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