

Automatic Labels in Leaflet

Mátyás Gedea, *

a Institute of Cartography and Geoinformatics, ELTE Eötvös Loránd University, saman@inf.elte.hu

* Corresponding author

Abstract: Automatic labelling is a lacking feature in the popular client-side web mapping library, Leaflet. Although there
exist various workarounds and substitutes, most of these do not fulfil the basic cartographic rules, e.g. avoiding text
overlaps.

This paper discusses the various workarounds addressing this problem, and introduces the author’s solution, which
extends Leaflet’s GeoJSON class with automatic labelling functionality. The new class displays labels for point, line or
polygon features. Labels can be placed either on right or left side of points or automatically for better fitting. Markers for
points are only displayed if their labels can be drawn without overlaps. Label text is specified either by property field
name or a user-specified function. It is also possible to specify priority order of features (higher priority labels are drawn
first) and to customize label styles.

Keywords: automatic labels, Leaflet, webcartography, open source

1. Introduction
Labels are essential part of maps. As this area was well
researched in the past decades, most desktop GIS software
has sophisticated solutions for map labelling (Brewer and
Frye, 2005). Server-side web mapping software such as
MapServer (OSGeo 2022) or GeoServer (GeoServer 2022)
also provide dynamic labelling tools. These can even be
controlled from client side using Styled Layer Descriptors
(SLD) in the map requests (Lupp 2007).
Compared to desktop and server-side environment, labels
are treated as stepchildren in client-side web mapping.
Most JavaScript libraries, especially open source ones
provide no or limited support for automatic labelling of
features (Brinkhoff 2017). This leads to poorly designed
web maps flooding the Internet – people want to share
information using maps but don’t want to spend too much
time with that, so they just use the built-in features of
libraries, even if those are cartographically inappropriate.
In traditional cartography there are strict rules of
positioning names on maps. According to Imhof (1975)
the general principles are:

- legibility: the names should be easily read,
discriminated, located,

- clear graphic association: the name and the object
to which belongs should be easily recognised,

- names should disturb other map content as little
as possible,

- names should assist directly spatial situation,
connections, etc.,

- type arrangement should reflect the classification
and hierarchy of objects,

- names should not be evenly dispersed over the
map, nor should names be densely clustered.

Considering all these principles meant tremendous manual
work on name placing. With the emerge of automatically
created maps these concepts first took a back seat. Later,
most of them were incorporated into various GIS systems,
but as the algorithms in the background of a decent label
placing system are rather complex (Doddi et al, 1997), they
didn’t really appear in client-side web mapping.
Naturally, not all the traditional principles can, or should
be implemented in the case of dynamic, zoomable web
maps. The possibility free zooming and panning of the
map allows more slack labelling as increasing the zoom
gives more space to display more names. At the same time,
it raises new challenges: labels on lower zoom levels
should be selected using the rules of cartographic
generalization.
This paper introduces a possible solution created for the
popular open-source web mapping framework Leaflet,
addressing at least a subset of Imhof’s name placing
principles.

1.1 Similar work
Naturally, there are other research projects on this topic.
Brinkhoff (2017) – besides giving a thorough overview on
the subject and also suggesting extensions on standards
such as Symbology Encoding (Müller 2006), – introduces
a prototype solution to be used with Google Maps
JavaScript API. His solution is reported to work fast even
with several thousand points but only deals with point
objects.
Kenta Hakoishi’s Leaflet.LabelTextCollision is a plugin
implementing a Canvas renderer extension that displays
labels and detects collisions (Hakoishi 2016).
Unfortunately this plugin has not been updated for six
years now, and lacks formatting options such as label

Advances in Cartography and GIScience of the International Cartographic Association, 4, 8, 2023.
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-8-2023 | © Author(s) 2023. CC BY 4.0 License

2 of 5

alignment, font settings and other styling possibilities; and
there is no possibility to handle icons and labels together.
A further extension from 3Maps, Leaflet.streetlabels
(Santos & Dias 2022) combines Hakoishi’s work with
Canvas-TextPath (Viglino 2016) to support labels along
polylines. This plugin also allows a limited text style
customisation: the font size and colour, and the text halo
properties can be set.
Other solutions simply use Leaflet’s tooltip object or
markers with a custom defined HTML element instead
icon which can be a workaround for some cases but does
not solve most problems, especially text collision.

2. Labelling features of popular open-source
client-side web mapping libraries
Farkas (2017) thoroughly examined the various web
mapping libraries. Based on his work, the most usable
client-side libraries are OpenLayers and Leaflet. There are
numerous other libraries as well but they are either not
totally open (e.g. the new version of MapBox GL JS
requires an access token even for instantiating the Map
object) (Mapbox 2022) or are less known or have very
limited cartographic capabilities.

2.1 OpenLayers
According to Farkas (2017), OpenLayers is the most
comprehensive client-side web mapping library available.
Vector features can be labelled as a part of their styling.
Label formatting options are rich and (just like any other
styling) may depend on feature attributes, which makes it
possible to differentiate various feature classes by their
label style (OpenLayers 2022). Label text can be rotated or
fitted to lines as well. By default, line and polygon labels
are only drawn on a specific zoom level if they fit into the
corresponding feature. This setting also prevent label
placing conflicts. Using the `declutter` option on a vector
layer, there is also conflict solving for point features and
their labels, which, together with setting `renderOrder` (a
function that takes two features as arguments and the sign
of the return value is used to determine the drawing order
of features) offers a great solution for prioritised labelling.
There is one issue here: the current viewbox of the map is
not considered when rendering labels, so some names may
partially fall outside the view (Figure 1).
A big disadvantage of OpenLayers is its harder learning
curve. Although its features are much richer than the other
popular library, Leaflet, non-expert users (especially ones
with limited previous programming skills) prefer this latter
one because it is much easier to get started with.

Figure 1. Decluttered labelling in OpenLayers.

2.2 Leaflet
Despite its limitations when compared to OpenLayers,
Leaflet is also very popular among web developers. Its
biggest advantage is simplicity: the most often needed
functions of an interactive web map can be implemented
with a few simple lines of code.
Leaflet has no built-in labelling solution. There are,
however, various plugins and workarounds to display
names on the map. One possible way is to create markers
without an icon, but with a custom HTML content, using
the DivIcon class (Figure 2). The disadvantage of this
solution is that it creates a label that is an independent map
feature, not connecting to the map symbol the name
belongs to.

Figure 2. Labelled polygons using L.DivIcon

Another solution is the use of Leaflet’s tooltips with the
`permanent` option set to true. Tooltips were originally
designed to appear only when user hovers the mouse
pointer over a feature, but with this workaround they will
be always visible (Figure 3). On the other hand, one needs
a lot of extra CSS rules to get rid of the default “bubble”
encapsulating the tooltip text.

Advances in Cartography and GIScience of the International Cartographic Association, 4, 8, 2023.
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-8-2023 | © Author(s) 2023. CC BY 4.0 License

3 of 5

Figure 3: Labels implemented as permanent tooltips

None of the workarounds above can do anything with label
collision conflicts, nor any other of Imhof’s principles.

2.3 Dynamic labelling features web mapping libraries
should provide
In order to help creating easily usable, informative maps,
a web mapping library should offer the followings:
- The possibility of adding dynamic labels to features.
Label text and also its styling might depend on attributes.
- These labels should not overlap with each other or with
any point symbols. Web maps are dynamically zoomable,
therefore no need to display all names all time, only that
much that can be fitted into the current view.
- Some point feature classes – especially settlements –
generally only appear together, i.e. if a label is not
displayed because it cannot fit without overlaps, the
corresponding point symbol should also be removed.
- If not all labels are displayed all time, there should be a
possibility to set a priority order.

3. Features of ‘leaflet-labeler’
The author developed a subclass of Leaflet’s GeoJSON
layer. This class (the work name is Labeler) displays labels
upon features based on either an attribute or a user defined
function. The labels are dynamically placed, to avoid
conflicts. Point symbols are only displayed if their
symbols as well as the corresponding label can be
displayed without overlaps.

3.1 Label placing mechanism
In order to save computing time, label placing mechanism
is rather simple: when creating the layer, features are
stored sorted based on their priority. On every update of
the map (change of the viewport bounding box due to map
move or zoom) bounding boxes of labels (in pixel
coordinates) are calculated before displaying, and they are
only placed to the map if the bounding box fits the current
view and has no conflict with the bounding boxes of the
labels already displayed. Point symbols are treated the
same, their bounding boxes are also taken into account.
Currently there are four possible positioning settings for
labels: centered (suggested for lines and polygons), left
and right (for points), and automatic, which means left and
right positions are also tested.

Labels are HTML objects, having a specific class
name, therefore it is easy to apply various styles on them.
As CSS currently does not support “halo” effect for texts,
(but an outline is usually important for labels on web
maps) it is implemented by the `text-shadow` CSS
property.

3.2 Usage of the Labeler class
The main goal was to provide a simple solution for the
most typical needs. Therefore, after including the
JavaScript and the CSS file of leaflet-labeler in the code,
adding dynamic labels to a GeoJSON layer might be as
simple as changing `L.GeoJSON` to `L.Labeler` in the
JavaScript code, in case feature names are stored in the
`name` attribute and the default label style fits the
mapmaker’s needs.
There are a bunch of options that can be used to customize
labels.

- It is possible to specifiy a property that stores
label text. Alternatively, a labelling function also
can be defined (in this case the layer object of
each feature is passed as parameter to the function
– just like in the case of Leaflet’s built-in
`bindPopup` and `bindTooltip` functions).

- Default label style can be overridden either by an
object literal or a function returning an object of
CSS settings.

- Point labels are displayed together with the
corresponding marker. If the label is not
placeable without conflict, the marker is also
hidden.

- It is possible to apply a filter on features not only
on layer creation (which is already a feature of
L.GeoJSON) but at any time. This is useful when
one wants to dynamically set which subset of
features should be displayed on the map.

The extension (with examples) is available on Github, at
https://github.com/samanbey/leaflet-labeler.

3.3 Examples
Figure 4 shows a point feature layer before and after
zooming in. It also demonstrates the use of a labelling and
a styling function (labels are composed of settlement
names and their population; major cities are written in
upper case and bold letters).

Advances in Cartography and GIScience of the International Cartographic Association, 4, 8, 2023.
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-8-2023 | © Author(s) 2023. CC BY 4.0 License

4 of 5

Figure 4. Points with labels – the same map with different zoom
settings.

Figure 5 displays a map with polygons labelled. This
example also features hatch fill, implemented by leaflet-
hatchclass (Gede 2022). Although the default label style
settings include non-wrapping whitespaces (forcing single
line labels), it is overridden here to display long county
names in multiple lines if necessary.

Figure 5. Polygons with labels.

Figure 6 shows lines with labels (a road network with road
numbers). Displaying curved labels along lines (e.g. for
street names) is not supported yet. It is possible, however,
to put a “box” around labels, using simple CSS rules.
Taking advantage of the possibility of text styling
functions, motorways are differentiated on the map by blue
background.

Figure 6. Lines with labels.

3.4 Performance
Rendering speed was tested on a notebook with Core i7
CPU. The test dataset contains settlements of Hungary as
points (around 3200 objects). Loading or updating the map
after viewbox change takes typically 0.4–0.7 seconds,
regardless the browser used (tested on Google Chrome,
Mozilla Firefox and Microsoft Edge). With only 500
objects, rendering is under 0.1 seconds. These delays mean
that visualisation of large datasets is still enjoyable.

3.5 Conclusions, future plans
Recognising the need of an easy-to-use solution for
automatic labelling in client-side web maps, the author
developed a tool that extends Leaflet to display labels for
point, polygon or line objects. Labels are highly
customizable, their text and style can be set based on
feature properties.
This is an ongoing project; there are some limitations as
well: label placing conflicts are detected only within the
layer. (If there are more layers with labels, conflicts
between texts belonging to different layers are not
resolved.) Labels for lines can only be placed to the
centroid of the line (no rotated or curved labels).
Future plans include the possibility of fitting labels on
curves (for example street or river names or labelled
contour lines), an option to force polygon labels inside the
corresponding polygons, and to make multiple instances of
layers with labels detect label placing conflicts together.
This latter might be realized by extending a renderer class
instead of a layer class, which would also make it possible
to use data sources other than GeoJSON for labelling.

4. References
Agafonkin, V., 2022. Leaflet API reference.

https://leafletjs.com/reference.html
Brewer, C.A., and Frye, C., 2005. Comparison of GIS

and Graphics Software for Advanced Cartographic
Symbolization and Labeling: Five GIS Projects.
Proceedings of the 22nd ICC, A Coruña, Spain, 2005.

Brinkhoff, T., 2017. Supporting Dynamic Labeling in
Web Map Applications.
https://agile-

Advances in Cartography and GIScience of the International Cartographic Association, 4, 8, 2023.
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-8-2023 | © Author(s) 2023. CC BY 4.0 License

5 of 5

online.org/images/conferences/2017/documents/shortpa
pers/80_ShortPaper_in_PDF.pdf

Doddi, S., Marathe, M.V., Mirzaian, A., Moret, B.M.E.,
Zhu, B., 1997. Map labeling and its generalizations.
Proceedings of the 8th SIAM Symposium on Discrete
Algorithms SODA'97, pp. 148–157.

Farkas, G., 2017. Applicability of open-source web
mapping libraries for building massive Web GIS clients.
In: Journal of Geographical Systems, Springer, 19(4),
pp. 273–295.

Gede, M., 2022. Hatch Fill on Webmaps – to Do or Not
to Do, and How to Do, Abstr. Int. Cartogr. Assoc., 5,
48, https://doi.org/10.5194/ica-abs-5-48-2022

GeoServer, 2022. GeoServer documentation.
https://docs.geoserver.org/

Hakoishi, K., 2016. Leaflet.LabelTextCollision.
https://github.com/yakitoritabetai/Leaflet.LabelTextColl
ision

Imhof, E., 1975. Positioning Names on Maps, The
American Cartographer, 2:2, 128-144, DOI:
10.1559/152304075784313304

Lupp, M. (ed.), 2007. OGC Styled Layer Descriptor
profile of the Web Map Service Implementation
Specification, Version 1.1.0 (revision 4), OGC 05-
078r4. https://portal.ogc.org/files/?artifact_id=22364

Mapbox, 2022. Migrate to Mapbox GL JS v2.
https://docs.mapbox.com/mapbox-gl-js/guides/migrate-
to-v2/

Müller, M., 2006. OGC Symbology Encoding
Implementation Specification, Version 1.1.0 (revision
4). OGC 05-077r4

OpenLayers, 2022. OpenLayers Documentation.
https://openlayers.org/doc/

OSGeo, 2022. MapServer 8.0.0 Documentation.
https://mapserver.org/documentation.html

Santos, J., Dias, L., 2022. Leaflet.streetlabels.
https://github.com/3mapslab/Leaflet.streetlabels

Viglino, J-M., 2016. Canvas-TextPath.
https://github.com/Viglino/Canvas-TextPath

Advances in Cartography and GIScience of the International Cartographic Association, 4, 8, 2023.
31st International Cartographic Conference (ICC 2023), 13–18 August 2023, Cape Town, South Africa. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-4-8-2023 | © Author(s) 2023. CC BY 4.0 License

