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Abstract:

Intermodal transportation, using multiple modes in a single journey, promotes sustainable logistics. This paper addresses
the Intermodal Vehicle Routing Problem and proposes GAGE-Q, which integrates graph embedding and Reinforcement
Learning into a Genetic Algorithm. Our method models cities and their multi-modal connections as a graph, leveraging
embedding for spatial dependencies and RL-based crossover for faster convergence and better solutions. Experiments
on synthetic and real-world data show that GAGE-Q outperforms state-of-the-art methods, offering improved solution

quality and efficiency in intermodal route planning.
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1. Introduction

Intermodal transportation employs multiple modes (trains,
trucks, planes) in a single journey, often increasing sustain-
ability by reducing energy use, emissions, and congestion
Liu et al. (2022). However, efficiently planning and in-
tegrating these modes while minimizing travel costs and
energy consumption remains a significant challenge.

Intermodal transportation route planning extends the Ve-
hicle Routing Problem (VRP) by choosing the best mode
of travel (e.g., highways, railways, air) for each trip seg-
ment. The network is modeled as a graph with nodes as
cities and edges as mode-specific travel costs. The goal is
to minimize total cost while meeting supply and demand
constraints. For instance, in Figure 1, flying first from start
point to node 5 and then taking a train to the end point
costs 25, whereas using trucks from start point to node 3
then node 5, and then using a train to the end point might
cost 24, proving more efficient.

Intermodal transportation differs from VRP by allowing
multiple edges between nodes, adding complexity. Strate-
gies to address intermodal VRP include exact algorithms,
metaheuristics, and machine learning models Go¢men and
Erol (2019). Exact algorithms work for small instances
but struggle with larger, complex problems. Metaheuris-
tics Yang et al. (2023)Mohammed et al. (2017) excel at
scale, while machine learning, especially Reinforcement
Learning (RL) Qin and Sun (2022)Aghazadeh and Wang
(2024), offers near real-time solutions but requires exten-
sive training and lacks metaheuristic precision.

Figure 1. Overview of Intermodal Transportation.

Recent research on intermodal VRP often uses Genetic Al-
gorithms (GAs) Fazayeli et al. (2018), favored for their
simplicity and global solution exploration Okyere et al.
(2022). However, GAs can struggle with slow run times
and local optima Zhu et al. (2022), especially in the com-
plex solution space of intermodal VRP.

To address GA’s challenges in intermodal VRP, solutions
include customizing GA for specific problems Sun et al.
(2017) or adding extensions to accelerate convergence Faza-
yeli et al. (2018). While these improve results, they lack
adaptability to intermodal VRP’s complexities. Crossover,
a vital GA component, navigates the search space but varies
in effectiveness across problems Kang et al. (2018). Con-
ventional operators like single-point or multi-point crossovers
rely on fixed probabilities, often ignoring individual prob-
lem features, causing convergence issues Sun et al. (2017).

To enhance crossover in GAs, we propose integrating Re-
inforcement Learning (RL) to replace random gene selec-
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tion with smarter, data-driven decision-making. RL learns
from previous crossovers to identify weak chromosome
segments and optimize exchanges, guiding the algorithm
toward better solutions. To our knowledge, guided crossover
using RL in GAs for intermodal VRP remains unexplored.

Another key limitation in traditional GAs is the neglect of
local spatial dependencies within network graphs, which
can lead to suboptimal solutions or delayed convergence,
especially in complex intermodal VRPs with multi-layered
connectivity. Utilizing graph embedding addresses this by
capturing hidden mode-aware spatial relationships and pro-
viding a similarity metric, which we incorporate as an RL
reward signal.

We propose GAGE-Q (Genetic Algorithm with Graph Em-
bedding and Deep-Q-Networks), combining graph embed-
ding and RL to improve GA performance. Graph embed-
ding captures spatial neighborhood similarities as RL re-

wards, while an advanced RL model guides adaptive crossover,

balancing exploration and exploitation for faster conver-
gence and superior solutions.

o We employed a spatial neighborhood-based graph neu-
ral network embedding model to learn similarity scores
for different transportation modes within the proposed
network graph of the problem as a new approach for
reward signal in RL.

e By utilizing the similarity score obtained from the
graph embedding model as a novel reward signal, we
trained an RL model to identify optimal gene change
points within the crossover function in the GA. In-
tegrating RL enables the acceleration of convergence
and facilitates the discovery of superior solutions due
to the guided and adaptive nature of crossover based
on the problem’s graph structure.

e Extensive experiments have been conducted on syn-
thetic and real-world datasets, demonstrating GAGE-
Q’s superior efficiency and effectiveness compared to
state-of-the-art algorithms.

Additionally, to calculate travel costs, we go beyond stan-
dard distances by factoring in transportation modes and
greenhouse gas emissions, aligning with green intermodal
transportation goals.

The paper is organized as follows: Section 2 reviews prior
studies and intermodal VRP challenges. Section 3 details
the proposed GAGE-Q. Section 4 presents the experimen-
tal setup and comparisons with baselines. Section 5 con-
cludes the study and suggests future research directions.

2. Related Works

Genetic Algorithms (GAs) are widely used in transporta-
tion and logistics, addressing challenges like time windows,
capacity constraints, and environmental concerns, especially
in green transportation Konstantakopoulos et al. (2022),
Sherif et al. (2021), Ren et al. (2020), Moghdani et al.
(2021). Multimodal transport, a focus in intermodal lo-
gistics, is more sustainable than unimodal road transport,
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offering cost savings and reduced environmental impact
Utama et al. (2020), Okyere et al. (2022).

GAs play a key role in optimizing intermodal logistics,
tackling objectives such as distance, time, and emissions.
Adaptive GAs with dynamic crossover and mutation prob-
abilities have shown promise in reducing greenhouse gas
emissions Yang et al. (2023). Similarly, GA models ad-
dressing CO, emissions, time, and distance Okyere et al.
(2022) have been proposed. Other studies use GAs for
complex logistics networks, integrating green transporta-
tion with inventory challenges or incorporating fuzzy de-
mands and time windows Sherif et al. (2021), Fazayeli et
al. (2018).

Beyond green logistics, GAs have been applied to mul-
timodal transportation problems, optimizing routing and
mode selection. Adaptive GAs enhance global search per-
formance Sun et al. (2017), while hybrid GAs address spe-
cific constraints like multimodal time windows Fazayeli et
al. (2018). However, challenges such as slow convergence
and local optima persist.

Emerging methods, including Reinforcement Learning, show
promise for intermodal VRPs, offering strong generaliza-
tion capabilities Adi et al. (2020), Zhang et al. (2024),
Song et al. (2023). Yet, RL demands extensive data and
fine-tuning, and its accuracy remains below metaheuristic
methods like GAs or Mixed-Integer Linear Programming.

Hybrid models combining GAs with other methods ad-
dress these limitations. For example, combining GAs with
dynamic programming improves stability in drug design
Fuetal. (2022), while Q-learning-based GAs have achieved
superior results in solving NP-hard problems like the Trav-
eling Salesman Problem (TSP) Zheng et al. (2023). Appli-
cations of graph-enhanced GAs, such as minimizing neural
network computation costs Paliwal et al. (2019), highlight
the potential of leveraging graph structures for optimiza-
tion.

Despite progress, integrating adaptive mechanisms into GAs
to address intermodal VRPs remains underexplored. Cur-
rent methods fail to fully utilize spatial dependencies in in-
termodal transportation networks, limiting their scalability
and precision.

To address this gap, proposed GAGE-Q method combines
graph embedding and RL within the GA framework. By
capturing spatial neighborhood similarities as RL rewards,
GAGE-Q enhances the crossover process, enabling faster
convergence and superior solutions. This novel integration
dynamically adapts to complex intermodal VRPs, over-
coming traditional GA limitations and achieving high com-
putational efficiency and solution quality.

3. Methods

In this section, we will overview of the GAGE-Q, and a
detailed explanation of the technical methods employed in
this study.
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3.1 Overview of GAGE-Q

As shown in Figure 2, the GAGE-Q algorithm for the in-
termodal VRP starts with the initialization of a population
comprising routes with distinct sequences of locations and
transportation modes. Subsequently, the fitness of each
solution is evaluated based on criteria such as total travel
distance, time, and greenhouse gas emissions. Employing
elitism, the algorithm selects the best-performing individ-
uals to propagate to the next generation unaltered, while
parent selection is conducted to determine individuals for
Crossover.

During crossover, instead of traditional methods, RL is uti-
lized to identify weaknesses in each chromosome’s route
sequence and transportation mode selection. The trans-
portation network is embedded in a three-layer graph, tak-
ing into account transportation modes, to train the RL agent.
Resulting similarity matrices from this embedding act as
rewards for the RL agent, guiding it in identifying the weak-
est points in the routes. Guided by the RL agent’s sugges-
tions, new chromosomes are generated, replacing old ones
to produce offspring solutions with enhanced characteris-
tics. This iterative process continues for multiple genera-
tions until a stopping criterion (maximum number of itera-
tions) is met.

3.2 Components of GAGE-Q

In this section, we will explain the key components of GAGE-

Q and provide insights into how each element, including
reinforcement learning and graph embedding, contributes
to enhancing the performance of the algorithm.

3.2.1 Chromosome Encoding

Designing an effective chromosome representation is cru-
cial for the proposed Genetic Algorithm (GA) model, as all
subsequent tasks, including the RL model, depend on it.

The proposed representation comprises two segments: city
sequences and transportation modes. The first segment
prioritizes city traversal order, while the second specifies
the transportation mode between consecutive cities. Chro-
mosome lengths remain fixed by padding unused cities or
routes with zeros. Figure 3 illustrates this structure.

In the example, six cities are available. The first six genes
represent visited cities, and the next five indicate trans-
portation modes. Unused cities (e.g., cities 1 and 3) and
modes are set to zero. Figure 3 shows a route starting at
the initial node, moving to city 4 by train (mode 2), then to
city 2 by airplane (mode 3), and finally to the destination.
This fixed-length representation ensures consistency, sim-
plifies the GA process, and includes a penalty for infeasible
routes.

3.2.2 Fitness Function

The fitness function is crucial in optimization, assigning
scores to chromosomes based on performance. For this
intermodal VRP, it balances minimizing total GHG emis-
sions and travel costs, accounting for mode-specific costs
and emission rates.
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Let F denote the fitness function as the sum of GHG emis-
sions and travel costs across all routes. For each route 7,
the GHG emissions E; and travel costs C; can be calcu-
lated as follows:

GHG Emissions: E; = ZZ Z distij x GHG rateﬁ?‘)de

i j mode
(1
Travel Costs: Cr =Y ) ) time;; X travel COSt?;Odc
i j mode
2)

where dist;; is the distance traveled on route 7T between
nodes i and j, GHG rate}‘}"de is the GHG emission rate per
kilometer for the transportation mode between nodes i and
J» time;; is the time taken to travel between nodes i and j,
and travel cost??"de is the travel cost per hour for the trans-
portation mode between nodes i and ;.

To prevent infeasible solutions in GA, we added a penalty
term Piyr to the fitness function. This large positive value
penalizes routes 7 that violate constraints, reducing their
selection probability. Thus, the fitness function F is de-
fined as a minimization problem:

Minimize F = Z(WlEk +w2Cr) + Py 3)
k

where wi and w; are the weights assigned to GHG emis-
sions and travel costs, respectively, for normalization pur-
poses to ensure that their impact on the overall fitness func-
tion is balanced, preventing bias toward larger values. These
weights were determined through trial and error.

Algorithm 1 Adaptive Crossover with Deep Q-Networks

1: Input: Selected Chromosomes P, Graph Embedding
¢, Parameters for DQN

2: Output: New Chromosomes P’

3: for each pair of parent chromosomes p;,p; € P do

4:  Initialize state s with chromosome pairs (7;, p;)

5 Initialize Ppey < {}

6:  while not converged do

7 Select action a from set of all actions A

8 Apply action a to determine gene change point

9 Generate new chromosome pair (p}, p’J) based on

action a

10: Compute reward r using graph embedding simi-
larity matrices

11: Update DQN with (s,a,r,s")

12: Set s < s’

13: Add (pg,p’j) t0 Pew

14:  end while

15: end for

16: P < Py

3.2.3  Crossover Operation

The crossover operation in GAGE-Q leverages RL to opti-
mize gene selection from parent chromosomes, producing
offspring with desirable traits. The RL model learns from
previous crossovers to make informed decisions, reducing
reliance on randomness. Algorithm 1 outlines the steps,
with further details in Section 3.3.
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Population with Two Phase Chromosomes
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Figure 2. Overview of Proposed GAGE-Q algorithm.
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Figure 3. Chromosome representation example.
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3.2.4 Mutation Operation

Mutation introduces diversity by randomly altering genes
in the chromosome, affecting route sequences and trans-
portation modes. Based on a predefined mutation rate, se-
lected genes are modified to generate new paths, replacing
old ones and exploring novel solutions in the population.

3.3 Adaptive Crossover based on Reinforcement Learn-
ing and Graph Embedding

As shown in Figure 2, the adaptive crossover operator uti-
lizes an RL model with a reward signal derived from graph
embeddings. A random walk on the graph captures path-
ways of varying lengths, processed by Node2Vec to com-
pute a similarity metric. This metric, sensitive to node re-
lationships, guides the RL model to optimize the chromo-
some sequence by placing related nodes closer together.
The next section details the RL and graph embedding com-
ponents.

3.3.1 Deep Q-Networks for Crossover Operation

The adaptive crossover leverages an RL model to deter-
mine the optimal gene change point, formulated as a Markov
Decision Process (MDP) and solved using Deep Q-networks

(DQN).

DQN, an RL algorithm combining deep learning and Q-
learning, approximates the optimal action-value function
Q*(s,a). Here, s represents the state (selected parent chro-
mosomes), and a is the action (gene change point). The
DQN, parameterized by weights 0, takes the state s as
input and outputs Q-values for all possible gene change
points. Actions are selected using an €-greedy strategy to
balance exploration and exploitation. The network mini-
mizes the Temporal Difference (TD) error between target

and estimated Q-values using the following loss function:

2
L(0) =E;4ry~p <r+ ymax Q(s',d’;67) — O(s, a; 9)>
“)

where r is the immediate reward, s is the next state, ¥ is
the discount factor, 6~ represents the target network pa-
rameters, and D is the replay buffer storing experiences
(s¢,as,11,5:+1). Through gradient descent, the weights 0
are iteratively updated, improving the Q-value approxima-
tion and enabling effective gene change point selection.

DQN is particularly well-suited for this discrete action space
and integrates seamlessly with the MDP-based approach.
The components of the MDP are defined as follows:

3.4 State (S)

The state is defined as the pair of selected parent chromo-
somes p; and p; from the population P:

§= {ﬁivﬁj}a

This state space provides sufficient information for the agent
to identify the optimal gene change point.

3.5 Action (A)

i,jepP &)

The action space A corresponds to all gene positions in the
chromosomes:

A={gi g EPricPkeY} (©6)
The agent’s task is to select the gene change point that
maximizes the long-term reward.

The next section introduces a novel reward signal design
to guide the agent’s decision-making process effectively.

3.5.1 Graph embedding based Reward

A key element in the DQN formulation is the reward, de-
signed to capture spatial relationships in the graph, consid-
ering transportation modes. Using node2vec Grover and
Leskovec (2016), embeddings are learned via random walks,
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preserving graph topology and neighborhood structures.
For multi-modal transportation graphs, subgraphs are cre-
ated for each mode (e.g., road, rail, air), weighted by travel
costs. Node2vec is then applied to each subgraph to gen-
erate embeddings.

a Random Walks: We perform random walks on each
mode-specific subgraph to generate sequences of nodes.
These random walks capture the spatial structural prop-
erties and relational context within each transporta-
tion mode.

b Transition Probabilities: During random walks, we
determine transition probabilities based on a combi-
nation of breadth-first search (BFS) and depth-first
search (DFS) strategies. This ensures a balance be-
tween exploring local neighborhoods and global topol-
ogy within each transportation mode.

¢ Embedding Learning: We use the continuous bag-of-
words (CBOW) model to learn embeddings from the
observed node sequences generated during random
walks to predict the spatial neighborhood of a given
node based on its embedding representation, captur-
ing the relational information encoded in the mode-
specific subgraph.

Let V denote the set of nodes in the transportation graph,
and d represent the dimensionality of the node embed-

dings. For each mode-specific subgraph G,,,4., Where mode €

{road,rail ,air} represents the transportation modes (high-
way, railway, airway), we learn node embeddings using
node2vec:

Emb,,;,q. = node2vec(Gpqe,d) @)
Here, Emb,,,4. represents the node embedding for trans-
portation mode mode € {road,rail,air}, obtained using
the node2vec algorithm with d dimensions. In this way, we
obtain embedding for nodes corresponding to each trans-
portation mode. Therefore we have have three-layered sim-
ilarity matrix between each pair of nodes for different modes.
After obtaining mode-specific node embedding, we can
compute the similarity between nodes based on their em-
bedding using cosine similarity. For two nodes v; and v,
with embedding e’l'wde and eg"’de , the cosine similarity is
computed as:

erlm)de . egmde
lefrode|| x flez |

cosine_similarity’('coldfz) =

®)

This similarity matrix captures the pairwise spatial simi-
larities between nodes in the transportation network within
each transportation mode and serves as the reward for the
RL agent in which the reward signal guides the agent to-
ward its goal, allowing it to learn and maximize long-term
gains. For the adaptive crossover, the goal is to place simi-
lar nodes in close proximity within the chromosome struc-
ture. For instance, if nodes 1 and 2 are close together in
the graph, positioning them similarly in the chromosome
encourages the RL model to maintain this proximity in the
correct sequence.
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4. Experiments

We evaluate GAGE-Q against traditional methods (TS Brandao

(2011), SA Afifi et al. (2013), GA Tasan and Gen (2012)),
Q-learning Aghazadeh and Wang (2024), and two GAGE-
Q variants: Naive GAGE (no RL) and Naive GA-Q (no
graph embedding, using distance as a reward). Experi-
ments assess GAGE-Q’s efficiency and effectiveness across
varying scenarios, including different node sizes and com-
plexities. An ablation study examines Fitness Function
Curves, Model Robustness, and the impact of Spatial Graph
Embedding and RL.

We will utilize two types of data: synthetic data of varying
sizes to test the proposed model under different scenarios,
and real-world case studies spanning major cities across
Canada. The synthetic data encompasses three scenarios
with city counts of 15, 30, and 60. As for the real-world
data, all travel costs, greenhouse gas emissions, and total
distances are derived from actual observations, which will
be elaborated on in Section 4.3.

Model parameters include DQN parameters such as the
learning rate of 0.1, the discount factor of 0.9, and the ex-
ploration rate of 0.2, with a three-layer architecture of 64,
32, and 16 nodes. For all GA models, there is a population
size of 500, a mutation probability of 0.15, and a crossover
probability of 1. Baseline models employ a Tabu Tenure
of 10 in Tabu Search, an initial temperature of 10 decreas-
ing by 0.9 in Simulated Annealing, and 500 episodes for
all models. Additionally, a penalty of 100 is assigned for
route infeasibility.

F
4.1 Computational Time Performance

This section presents the results of comparing the perfor-
mance of the proposed GAGE-Q algorithm with four other
algorithms across three different scenarios involving 15,
30, and 60 nodes. The results are summarized in Table
2, which shows the time each algorithm takes to reach its
best solution and the corresponding fitness scores across
scenarios involving 15, 30, and 60 nodes.

For the 15-node scenario, GAGE-Q achieves the best fit-
ness score (10) in 45 seconds, outperforming TS, SA, GA,
and Q-Learning in both quality and speed. In the 30-node
scenario, GAGE-Q delivers a fitness score of 24 in 58 sec-
onds, while other methods take longer and yield less opti-
mal solutions. For 60 nodes, GAGE-Q maintains its lead
with a fitness score of 89 in 95 seconds, outperforming all
baselines. These results highlight GAGE-Q’s superior ef-
ficiency and solution quality across varying problem sizes.

Overall, GAGE-Q outperforms TS, SA, GA, and Q-Learning
with superior fitness scores and faster convergence, driven
by its RL-enhanced crossover process.

4.2 Ablation Study

We conduct an ablation study to assess the impact of spa-
tial graph embedding and RL in GAGE-Q by comparing
it to Naive GAGE (without RL) and Naive GA-Q (without
graph embedding).
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Table 1. Comparison of Running Time and Best Solu-
tion Fitness Scores for Different Algorithms across Various

Scenarios (15, 30, and 60 Nodes)

H Parameter ‘ 15 Nodes ‘ 30 Nodes ‘ 60 Nodes

TS Fitness Score 69 239 1019
Time 47 Sec 69 Sec 95 Sec
SA Fitness Score 78 195 1065
Time 53 Sec 114 Sec 182 Sec
GA Fitness Score 29S 110 850
Time 66 Sec 160 Sec 276 Sec
Fitness Score 21 67 417
Q-Learning [{------------- oo oo
Time 175 Sec 265 Sec 461 Sec
Fitness Score 17 42 136
Naive GAGE [{----------cooooame
Time 90 Sec 189 Sec 355 Sec
Fitness Score 20 48 175
Naive GA-Q |{------- e e e R T
Time 69 Sec 83 Sec 127 Sec
Fitness Score 10 24 89
GAGE-Q |{------- B e e el
Time 45 Sec 58 Sec 95 Sec

4.2.1 Fitness Function Convergence Curves

We compare the convergence quality of GAGE-Q and base-
line models across 15, 30, and 60-node scenarios using fit-
ness scores from Section 3.2.2, as shown in Figure 4.

In the 15-node scenario, GAGE-Q achieved the best score
(3.4), outperforming Naive-GAGE (12.4) and GA (26.8).
For 30 nodes, GAGE-Q scored 8.5, surpassing Naive-GAGE
(31) and GA (67). In the 60-node scenario, GAGE-Q again
excelled with a score of 17, compared to Naive-GAGE (81)
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edges correlates with changes in the fitness function value.
However, it is notable that, on average, there is a difference
of 4.6 between models with and without graph embedding.
This discrepancy increases to 7.94 for Scenario 2 and 10.0
for Scenario 3. Consequently, employing spatial graph em-
bedding leads to a dramatic improvement in fitness scores.

4.2.4  Influence of using Reinforcement Learning

Table 2. Comparison of Running Time and Best Solution

H Parameter ‘ 15 Nodes ‘ 30 Nodes ‘ 60 Nodes

GA Fitness Score 29 110 850
Iteration 255 265 280
Fitness Score 20 48 175

Naive GA-Q [{------------oofromooe e
Iteration 310 317 350

This section investigates the influence of RL mechanisms
in the optimization of intermodal transportation routes by
comparing the results obtained from simple GA, Naive-
GAGE, Naive GA-Q, and GAGE-Q. The comparison is
conducted across scenarios involving 15, 30, and 60 nodes
to assess the impact of RL on convergence behavior and
solution quality.

The results demonstrate a clear advantage of incorporat-
ing RL mechanisms in Naive GA-Q over the GA in terms
of convergence iterations and solution quality. In all sce-
narios, Naive GA-Q exhibits significantly faster conver-
gence, with convergence iterations of 255, 265, and 280

and GA (417), demonstrating the impact of RL-guided crossovefor 15. 30, and 60 nodes, respectively, compared to simple

on performance.
4.2.2  Robustness Analysis of Models

Achieving superior results requires both high accuracy and
consistent performance across runs, with low variance in-
dicating robustness and reliability. To evaluate this, each
model was run 10 iterations per scenario, and deviations
were calculated by normalizing each value against the min-
imum for that model. Figure 5 illustrates the findings.

As evident from the analysis, models incorporating adap-
tive crossover demonstrate greater robustness across mul-
tiple runs, exhibiting reduced susceptibility to variations
in different iterations. Among these adaptive models, the
proposed GAGE-Q model stands out for its superior ro-
bustness, consistently achieving comparable results across
different runs.

4.2.3 Influence of using spatial graph embedding

We analyze the impact of spatial graph embedding on GAGE-

Q performance by comparing its full version (green line,
Fig. 6) with a version using only distance as the reward
signal (red line, Fig. 6).

The gap analysis depicted in Figure 6 illustrates the signif-
icant impact of utilizing spatial graph embedding as a re-
ward signal compared to using distance alone as a reward
signal. This influence becomes particularly evident when
comparing results across different edge numbers within each
scenario. In Scenario 1, the increase in the number of

GA’s iterations of 317, 310, and 350 in the corresponding
scenarios. Moreover, Naive GA-Q achieves superior solu-
tion quality, as evidenced by its lower best solution fitness
scores of 20, 48, and 175 for 15, 30, and 60 nodes, respec-
tively, compared to simple GA’s scores of 29, 110, and 850.
These results underscore the effectiveness of RL in guiding
the optimization process towards more optimal solutions,
leading to improved solution quality and efficiency. The
ability of RL to learn from previous iterations and adap-
tively adjust crossover operations contributes to faster con-
vergence and enhanced exploration of the solution space.

4.3 Real Case Study

In this section, we conduct an empirical case study focused
on the Canadian context to validate the effectiveness of our
proposed approach.

4.3.1 Case Description

We conducted a case study on optimizing intermodal trans-
portation routes across Canada, focusing on 30 major cities
as nodes in the network (Figure 7). The transportation net-
work was constructed using data from Canada’s National
Highway System, National Railway Network (Canada Open
Government Portal '), and OpenFlights 2, ensuring com-
prehensive connectivity via road, rail, and air.

Uhttps://search.open.canada.ca/opendata
Zhttps://openflights.org
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Scenario 1, # Cities: 15

Scenario 2, # Cities: 30
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in the real case study

4.3.2  Optimization results

GAGE-Q optimized a green intermodal route from Mount
Pearl to Victoria, minimizing costs and emissions while
ensuring timely delivery (Fig. 8). It balanced air, rail, and
road transport more effectively than Q-learning, demon-
strating its eco-friendly and cost-efficient mode selection
capabilities.
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yyyyyyy

Figure 8. Optimized intermodal transportation route from
Mount Pearl to Victoria with GAGE-Q

5. Conclusion

This study introduces GAGE-Q, a novel Reinforced Ge-
netic Algorithm for optimizing green intermodal transporta-
tion routes. By integrating graph embedding and reinforce-
ment learning into the genetic algorithm framework, GAGE-
Q improves solution quality and computational efficiency
while balancing economic and environmental goals. Our
approach, which incorporates multiple transportation modes
and greenhouse gas emissions, outperforms optimization
methods like Tabu Search, Simulated Annealing, and stan-
dard Genetic Algorithms across various scenarios.

Future work could explore advanced techniques like graph
neural networks and attention mechanisms to better cap-
ture spatial dependencies in transportation networks. Re-
laxing fixed cost assumptions and incorporating dynamic
data sources, such as traffic patterns and weather, would
enhance the model’s realism and adaptability, paving the
way for more robust and sustainable intermodal transporta-
tion solutions.
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