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Abstract: Forest fires cause significant loss and damage each year, with climate change exacerbating their frequency and
severity, highlighting the need for accurate susceptibility maps for effective mitigation and planning. This study
integrating various environmental, ecological, and meteorological factors assesses the current and future forest fire
susceptibility of Quebec’s boreal forests under two climate change scenarios over the next 30 years (2021-2050). The
study involved identifying factors affecting forest fires and collecting 40 years of historical forest fire data (1980-2020).
Climate variables were downloaded, and the Fire Weather Index (FWI) was calculated using BioSIM software and then
interpolated into raster layers in ArcGIS Pro. The data was divided into training (70%) and testing (30%) sets, with a
Random Forest (RF) model trained and validated using three accuracy metrics including receiver operating
characteristics-area under the curve (ROC-AUC), the figure of merit (FoM), and F1 score, achieving results of 0.895,
0.808, and 0.894, respectively. Although forest fire susceptibility maps displayed some variation over the next 30 years
(2021-2050), no distinct upward or downward trend was detected. Additionally, susceptibility remained largely
unchanged under both the RCP 4.5 and RCP 8.5 scenarios. The study also highlighted the key factors affecting fire
susceptibility, with the FWI, live biomass, and dead biomass being the most significant, contributing 21.8%, 14.28%, and
11.35%, respectively. This study predicting fire susceptibility and providing current and future susceptibility maps offers
a proactive approach to climate change preparedness and improving resource allocation and forest fire risk management.

Keywords: Geographic information systems (GIS), Climate change, Machine learning (ML), Random Forest (RF),
Forest fire susceptibility mapping (FFSM).

2014; Pourtaghi et al. 2015), applying techniques that vary

1. Introduction widely in complexity and focus. These approaches are

Forest fires, whether natural or human-induced, are among
the most frequent natural hazards, causing significant loss
of life, biodiversity, and ecosystem services globally
(Khan and Eslamian 2022; Katan and Perez 2021). Forest
fires impact approximately 30% of the global terrestrial
surface, disrupting ecosystems and their services (Pechony
and Shindell 2010). Climate change and human activities
have further increased fire risks in many forested regions,
intensifying the threat of wildfires and their effects on
ecosystems (da Silva et al. 2018).

Regarding the Canadian National Forestry Database
(Canadian National Fire Database (CNFDB) 2024), more
than 8,000 fires occur annually, burning an average of over
2.1 million hectares in Canada. Additionally, there is a
growing global awareness of the importance and
susceptibility of Canadian boreal forests concerning future
climate change (Flannigan et al. 2009). Future changes in
temperature and precipitation are anticipated to alter the
patterns of forest fires in boreal areas (Flannigan et al.
2001).

Although it is challenging to control forest fires naturally,
forest fire susceptibility mapping (FFSM) is essential for
reducing risks and preventing damage. Numerous studies
on FFSM have utilized remote sensing (RS) and
geographic information systems (GIS) (Faramarzi et al.

generally categorized into physics-based, multi-criteria
decision analysis (MCDA), statistical, and machine
learning (ML) methods. Physics-based methods use
probabilistic equations related to fluid mechanics, heat
transfer, and canopy combustion (Keane 1998; Sturtevant
et al. 2009). These methods are generally computationally
intensive and require a thorough understanding of
underlying processes and comprehensive and precise
datasets. MCDA is a decision-making process that
assesses and compares multiple conflicting criteria to
choose the most suitable option or solution, considering
various factors and preferences. Some studies have
implemented MCDA methods for FFSM (Eskandari 2017,
Sari 2021). Given the complex structures and conflicting
criteria involved in forest fires, although MCDA
techniques allow solutions to be tailored to specific needs
and preferences (Yu etal. 2011; Zolekar and Bhagat 2015),
a major drawback of MCDA-based forest fire models is
their susceptibility to bias, as they rely on expert
knowledge. Statistical models are mathematical tools that
analyze data relationships, identify patterns, and make
predictions by quantifying relationships between
independent and dependent variables based on probability
and statistical theory (Chambers and Hastie 2017). Various
statistical methods have been applied to FFSM including
frequency ratio (FR) (Hong et al. 2017), evidential belief
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function (EBF) (Nami et al. 2018), and weight of evidence
(WOE) (Jaafari et al. 2017). Statistical models may lack
insight into physical fire processes, are sensitive to data
errors, and often struggle to capture complex factor
interactions. As an alternative to statistical models, ML
models have recently become essential tools for hazard
susceptibility mapping worldwide, proving highly
effective in assessing natural hazard risks (Rihan et al.
2023). These models are widely used for spatial
susceptibility assessment of various hazards, including
landslides (Goetz et al. 2015), soil erosion (Mosavi et al.
2020), floods (Gharakhanlou and Perez 2023), and are
frequently applied in studies on forest fire susceptibility
(Sachdeva et al. 2018; Shahfahad et al. 2022; (USGS)
2024).

Boreal forests are expected to be highly sensitive to
climate change, leading to changes in forest growth and
species composition, which could impact forest fires
through fuel dynamics (Kelloméki et al. 2005). While the
direct effects of climate change on climatic factors are
better understood, their influence on fire potential across
larger areas is less studied. Developing a deeper
understanding of how climate change affects the fire
susceptibility of boreal forests is crucial for predicting
future fire risks and shaping management strategies.
Accordingly, this study aims to assess the fire
susceptibility of Quebec’s boreal forests under projected
climate conditions for the next 30 years (2021-2050). To
achieve this, this study employs a random forest (RF)
model that (i) integrates multiple environmental,
ecological, and meteorological factors, (ii) evaluates the
impact of each factor on forest fire susceptibility, (iii)
examines the fire susceptibility under two climate change
scenarios until 2050, and consequently (iv) provides
spatial maps identifying forest areas prone to fire until
2050. The specific highlight of the current study that
differentiated it from preceding ones was its ability to
address these concerns.

2. Materials and methodology

Figure 1 illustrates the research methodology flowchart.
We began identifying and gathering a set of factors that
affect forest fires following the earlier studies (Gaudreau
et al. 2016; Gharakhanlou and Hooshangi 2021). Besides,
historical forest fire inventory data were gathered from
1980 to 2020 (40 years). Having downloaded climate
variables and calculated the Fire Weather Index (FWI) at
climate stations across Quebec using BioSIM 11.8.21.5
software (Centre and Régniere 2003), FWI values were
interpolated into continuous raster layers using the Kriging
interpolation tool in ArcGIS Pro 3.3.0. Next, predictor
values spanning 40 years were assigned to their
corresponding target variable (fire event), and the data was
randomly divided into training (70%) and testing (30%)
datasets. The optimal values for hyperparameters were
determined  using 5-fold  cross-validation  with
GridSearchCV, followed by training the RF model and
validating its performance using receiver operating
characteristics-area under the curve (ROC-AUC), figure of
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merit (FoM), and F1 score metrics. Finally, variable
importance was assessed, and forest fire susceptibility was
mapped under two climate scenarios for 2021-2050.
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Figure 1. The flowchart of research methodology.

2.1 Study area

Over the past 40 years, Canada has averaged 7,000
wildfires annually—mainly in British Columbia and the
boreal forests of Ontario, Quebec—with burned areas
ranging from 0.5 to over 7 million hectares yearly (Hanes
et al. 2019). This study focuses on Quebec’s boreal forest
(Figure 2), which spans 560,000 km2—one-third of the
province—and is dominated by coniferous trees (75%)
(Gaudreau et al. 2016).

Sus

UNITED
STATES

. Boreal forest
71 Quebec

Figure 2. Quebec’s boreal forest.
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2.2 Data and preprocessing of the data

This study examined several ecological, environmental,
and meteorological factors that may influence forest fire
spread, drawing on insights from previous research on fire
propagation (Alexandridis et al. 2011; Gaudreau et al.
2016; Zheng et al. 2017; Shahfahad et al. 2022). The
factors considered include elevation, slope, aspect, plan
and profile curvature, FWI, and four forest attributes, such
as total live and dead biomass, and two vegetation classes:
tree and non-tree vegetation. Elevation influences
temperature, rainfall, moisture, and wind directly, and
affects vegetation and fuel moisture indirectly, making it
relevant to this analysis (Tiwari et al. 2021). Terrain slope
is crucial in wildfire progression as fires spread faster
uphill due to the increased proximity to the ground on
steeper slopes (Bar et al. 2020). Aspect was also included
due to its relationship with solar radiation, as south-facing

slopes receive more sunlight, resulting in higher
temperatures, lower humidity, and stronger winds
(Sachdeva et al. 2018). Curvature, representing

topographic shape, was considered for its role in fire
spread (Gupta et al. 2018). FWI describes how
atmospheric conditions influence vegetation moisture
content and the potential for fire ignition and spread (Di
Giuseppe et al. 2018). Since FWI incorporates multiple
fire-relevant climate factors—such as minimum, mean,
and maximum temperature, total precipitation, dew point
temperature, relative humidity, 10-meter wind speed, and
snow depth accumulation—it is the only climate variable
included in our investigation. Live biomass, mainly trees,
serve as fuel for fires, with denser vegetation enhancing
both fire intensity and spread. Dead biomass, including
fallen branches and leaves, contributes to the fuel load,
intensifying and prolonging fires. Trees, having higher
moisture content, can help moderate fire behavior,
whereas non-tree vegetation, with lower moisture content,
burns more easily and rapidly. Table 1 provides an
overview of all datasets used in this study, along with their
respective sources.

Data Variables

Source

Live biomass

Dead biomass
Vegetation (Tree)

Natural Resources
Canada (2022)

Maps of Canada’s
forest attributes

Vegetation (non-
tree)

Centre and Régniére
(2003)
Ministry of Natural
Resources and
Forests (2024)

Climate data FWI

Forest fire

inventory data Forest fires

Elevation
1-arc second Slope United States
resolution SRTM- Aspect Geological Survey

DEM (USGS) (2024)

Plan curvature
Profile curvature

Table 1. Data collection along with their sources.
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Data preparation was performed using ArcGIS Pro 3.3.0.
The 1-arc second resolution Shuttle Radar Topography
Mission Global Digital Elevation Model (SRTM-DEM)
for the study area was downloaded from the Google Earth
Engine (GEE) cloud platform. Subsequently, slope, aspect,
and plan and profile curvature variables were derived from
the DEM using Surface Spatial Analyst tools such as
Slope, Aspect, and Curvature. To create continuous raster
data for the FWI across the entire study area, annual FWI
values were first calculated at climate stations throughout
Quebec province using BioSIM 11.8.21.5 software, and
then the Kriging interpolation tool was applied. To
generate annual forest fire inventory layers, the Polygon to
Raster tool was used. Additionally, forest attribute layers
were clipped to the boundary of the study area using the
Extract by Mask tool. Since the spatial resolution and
projection of layers varied, we first standardized the
projection and then applied resampling to achieve a
consistent spatial resolution of 1 km.

2.3 Climate change scenarios

The Representative Concentration Pathways (RCPs) are
climate scenarios projecting future greenhouse gas levels
and their impact on global temperatures. Each RCP
represents a unique emissions pathway, providing
different projections for climate change. RCP2.6 assumes
strong emission cuts to stabilize levels, RCP4.5 anticipates
moderate emissions with eventual stabilization, and
RCP8.5 (i.e., business-as-usual) represents high emissions
with substantial warming due to minimal mitigation (\VVan
Vuuren et al. 2011).

This study employed the regional climate model (RCM) to
project future annual FWI values from 2021 to 2050 under
RCP4.5 and RCP8.5 scenarios. RCM, built on CanRCM4,
enhances data from the global CanESM2 model to
generate more localized and higher-resolution climate
projections (Laprise 2008). RCMs are particularly
valuable for analyzing climate variability within specific
regions by incorporating finer geographic details that
broader global models might miss.

2.4 Random Forest (RF) model

RF is an ML model that builds multiple random decision
trees by creating bootstrap samples—random subsets of
the data with replacement—allowing each tree to fit
independently. The final prediction is made by aggregating
the predictions of all trees, a process known as bootstrap
aggregation or bagging (Breiman 1996). The RF model
incorporates two random processes: bootstrapping and
random feature selection. Bootstrapping prevents any two
trees from using the same data, which makes the model
less sensitive to the original training set. Random feature
selection reduces the correlation between the trees and has
an additional benefit. It ensures that some trees are trained
on less important features while others focus on more
significant ones, leading to a more balanced set of
predictions. It should be noted that the RF model was
implemented in Python using the scikit-learn library and
was employed within a classification framework to
differentiate fire-prone from non-fire-prone classes.
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2.5 Hyperparameter tuning

Hyperparameters in ML models play a crucial role in
determining their performance. While default settings are
often used, tuning these hyperparameters is essential to
optimize model outcomes and improve accuracy
(Gharakhanlou and Perez 2024). This study focused on
tuning two hyperparameters of the RF model, specifically
the number of estimators and maximum depth.
Hyperparameter tuning was performed using 5-fold cross-
validation and the "GridSearchCV" method to optimize
these parameters. The mean test accuracy score, which
measures the average accuracy of model predictions on the
test dataset, was used to evaluate the impact of different
hyperparameter combinations.

2.6 Model validation and performance assessment

The model’s performance was evaluated using three
accuracy metrics: ROC-AUC, FoM, and F1 score. The
ROC curve is a graphical tool for evaluating binary
classifiers by plotting the true positive rate against the false
positive rate at different threshold levels (Park et al. 2004).
AUC values range from 0.5 to 1, where 1 represents a
perfect prediction and 0.5 indicates a random prediction
(Park et al. 2004). The FoM evaluates the degree of
similarity and quantifies how accurately the model’s
predictions align with the expected results (Gharakhanlou
and Perez 2022). A higher FoM indicates improved model
performance, with values ranging from 0 (indicating no
overlap) to 1 (representing a perfect match). The F1 score
evaluates binary classification models by balancing
precision and recall. It ranges from 0 (poor performance)
to 1 (perfect performance), with higher values indicating
better accuracy in correctly predicting positive outcomes
(Chicco and Jurman 2020).

2.7 Variables’ importance assessment

This study also aimed to identify key variables affecting
forest fire susceptibility. Using RF’s feature importance
function, the study assessed the contribution of each
feature to model performance by measuring its impact
across all trees in the ensemble. Features with higher
average gain were considered more influential, enhancing
decision-making accuracy. This analysis aids in
prioritizing informative features and supports model
interpretation and feature selection.

3. Results

3.1 Hyperparameter tuning

This study optimized the number of estimators and
maximum depth hyperparameters of the RF model using
5-fold cross-validation and the GridSearchCV method.
The results were visualized using a heatmap to display the
accuracy for various settings of these two parameters
(Figure 3). The optimal hyperparameter values were 500
for the number of estimators and 29 for the maximum
depth, achieving an average test accuracy of 89.34%.
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Mean test accuracy score heatmap on validation datasets
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Figure 3. Mean test accuracy of the RF model on the validation
dataset with different values for its two main hyperparameters.

3.2 Model validation and performance assessment

The performance of the RF model was assessed using three
evaluation metrics: ROC-AUC, FoM, and F1 score. The
evaluation metrics, with a ROC-AUC of 0.895, a FoM of
0.808, and an F1 score of 0.894, confirmed the RF model’s
strong performance in accurately identifying forest fire-
prone areas.

3.3 Forest fire susceptibility maps

The primary objectives of this study were to provide forest
fire susceptibility maps and evaluate the impacts of climate
change on forest fire susceptibility in the study area over
the next 30 years (2021-2050). Accordingly, after training
and testing the RF model using data from 1980 to 2020,
the FWI layer was updated annually for years 2021-2050
based on the respective scenario and then input into the
model to predict annual forest fire susceptibility across the
study area. The predicted susceptibility values were then
classified into five categories, from very low to very high,
using the natural breaks classification method in ArcGIS
Pro 3.3.0. The percentage of the area within each
susceptibility class was calculated over 30 years (2021-
2050) for each climate scenario. Due to the minimal
variations in the area percentage of susceptibility classes
between the two scenarios (Figure Al. Appendix A), we
only depicted the area percentage of susceptibility classes
under the RCP 8.5 scenario (Figure 4), assuming current
emissions trends continue. Additionally, forest fire
susceptibility maps for 2030, 2040, and 2050 under the
RCP 8.5 scenario were created to spatially visualize fire
susceptibility across the study area (Figure 5).
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Forest Fire Susceptibility Classes Under the Climate Change Scenario RCP 8.5 from 2021 to 2050
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Figure 4. Area percentage of forest fire susceptibility classes from 2021 to 2050 under the RCP 8.5 scenario.
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Figure 5. Forest fire susceptibility maps generated for 2030, 2040, and 2050 under the climate change scenario RCP 8.5.

The "Very Low" class dominates the landscape, reflecting
consistently low fire susceptibility over the 30 years, with
some fluctuations. A notable portion of the area falls under
the "Low" class, which demonstrates moderate variability
but remains generally stable. The "Moderate" class covers
a smaller area but shows significant variability, indicating
fluctuating conditions. The "High" class occupies a very
limited area, displaying considerable variability and
inconsistent high susceptibility. Lastly, the "Very High"
class represents the smallest area, with relatively low
variability, suggesting a limited yet stable very high
susceptibility. This pattern suggests that forest fire
susceptibility classes varied over time, potentially
influenced by changes in climate. However, no clear trend
was observed to indicate a general increase or decrease in
susceptibility within these classes during the study period.
Besides, our findings revealed minimal differences in the
area percentages of susceptibility classes between the two
scenarios RCP 4.5 and RCP 8.5, indicating that forest fire
susceptibility classes remain relatively stable across both
climate change scenarios.

3.4 Assessment of factors’ importance on forest fires

The study identified key drivers of forest fire susceptibility
using the RF model’s feature importance analysis. Figure
6 depicts the relative importance of factors in predicting
forest fire susceptibility. The feature importance analysis
revealed that FWI, live biomass, and dead biomass were
the top three factors affecting forest fire susceptibility,

contributing 21.8%, 14.28%, and 11.35% to the prediction,
respectively.

Features Importance on Forest Fire Susceptibility Prediction

DEM

Dead biomass

Slope

Vegetation (non-tree)

Vegetation (tree)

profile curvature

Aspect

Figure 6. The relative importance of factors on forest fire
susceptibility prediction.

4. Discussion

Forests are essential natural resources, critical in
sustaining ecosystems (Suryabhagavan et al. 2016), and
supporting habitat continuity and species diversity.
However, forest fires pose the greatest threat to these
ecosystems, significantly contributing to environmental
transformation (Khan and Eslamian 2022). Forest fires are
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a recurring issue globally, making the spatial analysis of
fire events and identification of susceptibility zones crucial
for enhancing prevention and prediction efforts (Tian et al.
2013), a need that has become increasingly important over
the past decade (Miller and Ager 2012). Additionally, the
potential impact of climate change on fire regimes (Miller
and Ager 2012) underscores the need for accurate FFSM
in boreal forests. Given the strong connection between fire
and climate, as well as its crucial role in the lifecycle of
Canada’s forests (Wotton et al. 2010), this study mainly
focused on investigating the impacts of climate change on
forest fire susceptibility in the boreal forests of Quebec,
Canada. To accomplish this, this study employed an RF
model that integrated various environmental, ecological,
and meteorological factors, building on the potential
benefits of incorporating diverse factors to enhance the
accuracy of the FFSM (Pourghasemi 2016; Sachdeva et al.
2018; Shahfahad et al. 2022).

Recent research has focused on employing more robust
methodologies to create precise and accurate forest fire
susceptibility maps. The remarkable accuracy and
potential of ML models in FFSM have been demonstrated
in prior studies (Oliveira et al. 2012; Sachdeva et al. 2018;
Rihan et al. 2023). Accordingly, this study in alignment
with earlier studies (Gharakhanlou and Perez 2022;
Gharakhanlou and Perez 2023) demonstrated the potential
of the RF model in spatial susceptibility assessment,
specifically in FFSM (Oliveira et al. 2012). While earlier
studies (Stocks et al. 1998; Flannigan et al. 2009; Wotton
etal. 2010), emphasized a growing susceptibility of forests
to fires in Canada over time, our findings showed temporal
fluctuations in the susceptibility of Quebec’s boreal forest
to fires. Our results indicated no clear pattern suggesting a
general increase or decrease in forest fire susceptibility
between 2021 and 2050. Additionally, this study sought to
identify the key factors influencing forest fire
susceptibility. Our findings revealed that FWI, live
biomass, and dead biomass were the three most influential
factors in determining forest fire susceptibility,
contributing 21.8%, 14.28%, and 11.35% to the prediction,
respectively. Our findings aligned with previous studies
(Bedia et al. 2015; Atalay et al. 2024), emphasizing the
significant influence of FWI in FFSM.
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5. Conclusion

Forest fires have a major impact on the structure and
function of the boreal forest. Since fire ignition and spread
are heavily influenced by weather, climate change is likely
to significantly affect fire activity and, consequently, the
structure of the boreal forest. Accordingly, this study
examined the fire susceptibility of Quebec’s boreal forest
under two climate change scenarios (RCP 4.5 and RCP
8.5) for the next 30 years. Using an RF model, the study
incorporated various environmental, ecological, and
meteorological  factors, achieving strong model
performance (ROC-AUC of 0.895, FoM of 0.808, F1 score
of 0.894). Findings revealed that fire susceptibility classes
varied over time but showed no clear trend of increasing
or decreasing susceptibility. Additionally, minimal
differences were observed between the two climate
scenarios, suggesting stability in the susceptibility of
Quebec’s boreal forest to fires. This study also identified
key factors influencing fire susceptibility in Quebec’s
boreal forest, with FWI, live biomass, and dead biomass
being the most significant, contributing 21.8%, 14.28%,
and 11.35%, respectively.

This study by evaluating the impacts of climate change on
current and future forest fires and providing forest fire
susceptibility maps contributes in several manners: i) it
assists in identifying fire-prone areas, allowing for the
prioritization of regions that need targeted fire prevention
measures, such as firebreak creation, to mitigate the risk of
large fires; ii) the susceptibility maps aid in the efficient
allocation of firefighting resources, ensuring vulnerable
areas are properly monitored and prepared for potential
fires; iii) by revealing climate-induced changes in fire risk,
it supports proactive forest management practices, such as
adjusting tree density or species composition to reduce fire
hazards; and iv) by projecting forest fire susceptibility over
the next 30 years, it assists in predicting fire trends,
enabling authorities to plan more effectively for future fire
seasons.

6. Appendix A. Differences in forest fire
susceptibility across climate change scenarios
Figure Al shows minimal differences in the area
percentages of forest fire susceptibility classes between the
RCP 4.5 and RCP 8.5 scenarios.

Comparison of Forest Fire Susceptibility Classes Under RCP 4.5 and RCP 8.5 Scenarios (2021-2050)
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Figure Al. Differences in forest fire susceptibility across climate scenarios.
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