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Abstract: Forest fires cause significant loss and damage each year, with climate change exacerbating their frequency and 

severity, highlighting the need for accurate susceptibility maps for effective mitigation and planning. This study 

integrating various environmental, ecological, and meteorological factors assesses the current and future forest fire 

susceptibility of Quebec’s boreal forests under two climate change scenarios over the next 30 years (2021-2050). The 

study involved identifying factors affecting forest fires and collecting 40 years of historical forest fire data (1980-2020). 

Climate variables were downloaded, and the Fire Weather Index (FWI) was calculated using BioSIM software and then 

interpolated into raster layers in ArcGIS Pro. The data was divided into training (70%) and testing (30%) sets, with a 

Random Forest (RF) model trained and validated using three accuracy metrics including receiver operating 

characteristics-area under the curve (ROC-AUC), the figure of merit (FoM), and F1 score, achieving results of 0.895, 

0.808, and 0.894, respectively. Although forest fire susceptibility maps displayed some variation over the next 30 years 

(2021-2050), no distinct upward or downward trend was detected. Additionally, susceptibility remained largely 

unchanged under both the RCP 4.5 and RCP 8.5 scenarios. The study also highlighted the key factors affecting fire 

susceptibility, with the FWI, live biomass, and dead biomass being the most significant, contributing 21.8%, 14.28%, and 

11.35%, respectively. This study predicting fire susceptibility and providing current and future susceptibility maps offers 

a proactive approach to climate change preparedness and improving resource allocation and forest fire risk management. 

Keywords: Geographic information systems (GIS), Climate change, Machine learning (ML), Random Forest (RF), 

Forest fire susceptibility mapping (FFSM). 

1. Introduction

Forest fires, whether natural or human-induced, are among 

the most frequent natural hazards, causing significant loss 

of life, biodiversity, and ecosystem services globally 

(Khan and Eslamian 2022; Katan and Perez 2021). Forest 

fires impact approximately 30% of the global terrestrial 

surface, disrupting ecosystems and their services (Pechony 

and Shindell 2010). Climate change and human activities 

have further increased fire risks in many forested regions, 

intensifying the threat of wildfires and their effects on 

ecosystems (da Silva et al. 2018). 

Regarding the Canadian National Forestry Database 

(Canadian National Fire Database (CNFDB) 2024), more 

than 8,000 fires occur annually, burning an average of over 

2.1 million hectares in Canada. Additionally, there is a 

growing global awareness of the importance and 

susceptibility of Canadian boreal forests concerning future 

climate change (Flannigan et al. 2009). Future changes in 

temperature and precipitation are anticipated to alter the 

patterns of forest fires in boreal areas (Flannigan et al. 

2001). 

Although it is challenging to control forest fires naturally, 

forest fire susceptibility mapping (FFSM) is essential for 

reducing risks and preventing damage. Numerous studies 

on FFSM have utilized remote sensing (RS) and 

geographic information systems (GIS) (Faramarzi et al. 

2014; Pourtaghi et al. 2015), applying techniques that vary 

widely in complexity and focus. These approaches are 

generally categorized into physics-based, multi-criteria 

decision analysis (MCDA), statistical, and machine 

learning (ML) methods. Physics-based methods use 

probabilistic equations related to fluid mechanics, heat 

transfer, and canopy combustion (Keane 1998; Sturtevant 

et al. 2009). These methods are generally computationally 

intensive and require a thorough understanding of 

underlying processes and comprehensive and precise 

datasets. MCDA is a decision-making process that 

assesses and compares multiple conflicting criteria to 

choose the most suitable option or solution, considering 

various factors and preferences. Some studies have 

implemented MCDA methods for FFSM (Eskandari 2017; 

Sari 2021). Given the complex structures and conflicting 

criteria involved in forest fires, although MCDA 

techniques allow solutions to be tailored to specific needs 

and preferences (Yu et al. 2011; Zolekar and Bhagat 2015), 

a major drawback of MCDA-based forest fire models is 

their susceptibility to bias, as they rely on expert 

knowledge. Statistical models are mathematical tools that 

analyze data relationships, identify patterns, and make 

predictions by quantifying relationships between 

independent and dependent variables based on probability 

and statistical theory (Chambers and Hastie 2017). Various 

statistical methods have been applied to FFSM including 

frequency ratio (FR) (Hong et al. 2017), evidential belief 
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function (EBF) (Nami et al. 2018), and weight of evidence 

(WOE) (Jaafari et al. 2017). Statistical models may lack 

insight into physical fire processes, are sensitive to data 

errors, and often struggle to capture complex factor 

interactions. As an alternative to statistical models, ML 

models have recently become essential tools for hazard 

susceptibility mapping worldwide, proving highly 

effective in assessing natural hazard risks (Rihan et al. 

2023). These models are widely used for spatial 

susceptibility assessment of various hazards, including 

landslides (Goetz et al. 2015), soil erosion (Mosavi et al. 

2020), floods (Gharakhanlou and Perez 2023), and are 

frequently applied in studies on forest fire susceptibility 

(Sachdeva et al. 2018; Shahfahad et al. 2022; (USGS) 

2024). 

Boreal forests are expected to be highly sensitive to 

climate change, leading to changes in forest growth and 

species composition, which could impact forest fires 

through fuel dynamics (Kellomäki et al. 2005). While the 

direct effects of climate change on climatic factors are 

better understood, their influence on fire potential across 

larger areas is less studied. Developing a deeper 

understanding of how climate change affects the fire 

susceptibility of boreal forests is crucial for predicting 

future fire risks and shaping management strategies. 

Accordingly, this study aims to assess the fire 

susceptibility of Quebec’s boreal forests under projected 

climate conditions for the next 30 years (2021-2050). To 

achieve this, this study employs a random forest (RF) 

model that (i) integrates multiple environmental, 

ecological, and meteorological factors, (ii) evaluates the 

impact of each factor on forest fire susceptibility, (iii) 

examines the fire susceptibility under two climate change 

scenarios until 2050, and consequently (iv) provides 

spatial maps identifying forest areas prone to fire until 

2050. The specific highlight of the current study that 

differentiated it from preceding ones was its ability to 

address these concerns. 

2. Materials and methodology

Figure 1 illustrates the research methodology flowchart. 

We began identifying and gathering a set of factors that 

affect forest fires following the earlier studies (Gaudreau 

et al. 2016; Gharakhanlou and Hooshangi 2021). Besides, 

historical forest fire inventory data were gathered from 

1980 to 2020 (40 years). Having downloaded climate 

variables and calculated the Fire Weather Index (FWI) at 

climate stations across Quebec using BioSIM 11.8.21.5 

software (Centre and Régnière 2003), FWI values were 

interpolated into continuous raster layers using the Kriging 

interpolation tool in ArcGIS Pro 3.3.0. Next, predictor 

values spanning 40 years were assigned to their 

corresponding target variable (fire event), and the data was 

randomly divided into training (70%) and testing (30%) 

datasets. The optimal values for hyperparameters were 

determined using 5-fold cross-validation with 

GridSearchCV, followed by training the RF model and 

validating its performance using receiver operating 

characteristics-area under the curve (ROC-AUC), figure of 

merit (FoM), and F1 score metrics. Finally, variable 

importance was assessed, and forest fire susceptibility was 

mapped under two climate scenarios for 2021–2050. 

Figure 1. The flowchart of research methodology. 

2.1 Study area 

Over the past 40 years, Canada has averaged 7,000 

wildfires annually—mainly in British Columbia and the 

boreal forests of Ontario, Quebec—with burned areas 

ranging from 0.5 to over 7 million hectares yearly (Hanes 

et al. 2019). This study focuses on Quebec’s boreal forest 

(Figure 2), which spans 560,000 km²—one-third of the 

province—and is dominated by coniferous trees (75%) 

(Gaudreau et al. 2016). 

Figure 2. Quebec’s boreal forest. 
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2.2 Data and preprocessing of the data 

This study examined several ecological, environmental, 

and meteorological factors that may influence forest fire 

spread, drawing on insights from previous research on fire 

propagation (Alexandridis et al. 2011; Gaudreau et al. 

2016; Zheng et al. 2017; Shahfahad et al. 2022). The 

factors considered include elevation, slope, aspect, plan 

and profile curvature, FWI, and four forest attributes, such 

as total live and dead biomass, and two vegetation classes: 

tree and non-tree vegetation. Elevation influences 

temperature, rainfall, moisture, and wind directly, and 

affects vegetation and fuel moisture indirectly, making it 

relevant to this analysis (Tiwari et al. 2021). Terrain slope 

is crucial in wildfire progression as fires spread faster 

uphill due to the increased proximity to the ground on 

steeper slopes (Bar et al. 2020). Aspect was also included 

due to its relationship with solar radiation, as south-facing 

slopes receive more sunlight, resulting in higher 

temperatures, lower humidity, and stronger winds 

(Sachdeva et al. 2018). Curvature, representing 

topographic shape, was considered for its role in fire 

spread (Gupta et al. 2018). FWI describes how 

atmospheric conditions influence vegetation moisture 

content and the potential for fire ignition and spread (Di 

Giuseppe et al. 2018). Since FWI incorporates multiple 

fire-relevant climate factors—such as minimum, mean, 

and maximum temperature, total precipitation, dew point 

temperature, relative humidity, 10-meter wind speed, and 

snow depth accumulation—it is the only climate variable 

included in our investigation. Live biomass, mainly trees, 

serve as fuel for fires, with denser vegetation enhancing 

both fire intensity and spread. Dead biomass, including 

fallen branches and leaves, contributes to the fuel load, 

intensifying and prolonging fires. Trees, having higher 

moisture content, can help moderate fire behavior, 

whereas non-tree vegetation, with lower moisture content, 

burns more easily and rapidly. Table 1 provides an 

overview of all datasets used in this study, along with their 

respective sources. 

Data Variables Source 

Maps of Canada’s 

forest attributes 

Live biomass 

Natural Resources 

Canada (2022) 

Dead biomass 

Vegetation (Tree) 

Vegetation (non-

tree) 

Climate data FWI 
Centre and Régnière 

(2003) 

Forest fire 

inventory data 
Forest fires 

Ministry of Natural 

Resources and 

Forests (2024) 

1-arc second

resolution SRTM-

DEM 

Elevation 

United States 

Geological Survey 

(USGS) (2024) 

Slope 

Aspect 

Plan curvature 

Profile curvature 

Table 1. Data collection along with their sources. 

Data preparation was performed using ArcGIS Pro 3.3.0. 

The 1-arc second resolution Shuttle Radar Topography 

Mission Global Digital Elevation Model (SRTM-DEM) 

for the study area was downloaded from the Google Earth 

Engine (GEE) cloud platform. Subsequently, slope, aspect, 

and plan and profile curvature variables were derived from 

the DEM using Surface Spatial Analyst tools such as 

Slope, Aspect, and Curvature. To create continuous raster 

data for the FWI across the entire study area, annual FWI 

values were first calculated at climate stations throughout 

Quebec province using BioSIM 11.8.21.5 software, and 

then the Kriging interpolation tool was applied. To 

generate annual forest fire inventory layers, the Polygon to 

Raster tool was used. Additionally, forest attribute layers 

were clipped to the boundary of the study area using the 

Extract by Mask tool. Since the spatial resolution and 

projection of layers varied, we first standardized the 

projection and then applied resampling to achieve a 

consistent spatial resolution of 1 km. 

2.3 Climate change scenarios 

The Representative Concentration Pathways (RCPs) are 

climate scenarios projecting future greenhouse gas levels 

and their impact on global temperatures. Each RCP 

represents a unique emissions pathway, providing 

different projections for climate change. RCP2.6 assumes 

strong emission cuts to stabilize levels, RCP4.5 anticipates 

moderate emissions with eventual stabilization, and 

RCP8.5 (i.e., business-as-usual) represents high emissions 

with substantial warming due to minimal mitigation (Van 

Vuuren et al. 2011).  

This study employed the regional climate model (RCM) to 

project future annual FWI values from 2021 to 2050 under 

RCP4.5 and RCP8.5 scenarios. RCM, built on CanRCM4, 

enhances data from the global CanESM2 model to 

generate more localized and higher-resolution climate 

projections (Laprise 2008). RCMs are particularly 

valuable for analyzing climate variability within specific 

regions by incorporating finer geographic details that 

broader global models might miss. 

2.4 Random Forest (RF) model 

RF is an ML model that builds multiple random decision 

trees by creating bootstrap samples—random subsets of 

the data with replacement—allowing each tree to fit 

independently. The final prediction is made by aggregating 

the predictions of all trees, a process known as bootstrap 

aggregation or bagging (Breiman 1996). The RF model 

incorporates two random processes: bootstrapping and 

random feature selection. Bootstrapping prevents any two 

trees from using the same data, which makes the model 

less sensitive to the original training set. Random feature 

selection reduces the correlation between the trees and has 

an additional benefit. It ensures that some trees are trained 

on less important features while others focus on more 

significant ones, leading to a more balanced set of 

predictions. It should be noted that the RF model was 

implemented in Python using the scikit-learn library and 

was employed within a classification framework to 

differentiate fire-prone from non-fire-prone classes. 
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2.5 Hyperparameter tuning 

Hyperparameters in ML models play a crucial role in 

determining their performance. While default settings are 

often used, tuning these hyperparameters is essential to 

optimize model outcomes and improve accuracy 

(Gharakhanlou and Perez 2024). This study focused on 

tuning two hyperparameters of the RF model, specifically 

the number of estimators and maximum depth. 

Hyperparameter tuning was performed using 5-fold cross-

validation and the "GridSearchCV" method to optimize 

these parameters. The mean test accuracy score, which 

measures the average accuracy of model predictions on the 

test dataset, was used to evaluate the impact of different 

hyperparameter combinations. 

2.6 Model validation and performance assessment 

The model’s performance was evaluated using three 

accuracy metrics: ROC-AUC, FoM, and F1 score. The 

ROC curve is a graphical tool for evaluating binary 

classifiers by plotting the true positive rate against the false 

positive rate at different threshold levels (Park et al. 2004). 

AUC values range from 0.5 to 1, where 1 represents a 

perfect prediction and 0.5 indicates a random prediction 

(Park et al. 2004). The FoM evaluates the degree of 

similarity and quantifies how accurately the model’s 

predictions align with the expected results (Gharakhanlou 

and Perez 2022). A higher FoM indicates improved model 

performance, with values ranging from 0 (indicating no 

overlap) to 1 (representing a perfect match). The F1 score 

evaluates binary classification models by balancing 

precision and recall. It ranges from 0 (poor performance) 

to 1 (perfect performance), with higher values indicating 

better accuracy in correctly predicting positive outcomes 

(Chicco and Jurman 2020). 

2.7 Variables’ importance assessment 

This study also aimed to identify key variables affecting 

forest fire susceptibility. Using RF’s feature importance 

function, the study assessed the contribution of each 

feature to model performance by measuring its impact 

across all trees in the ensemble. Features with higher 

average gain were considered more influential, enhancing 

decision-making accuracy. This analysis aids in 

prioritizing informative features and supports model 

interpretation and feature selection.  

3. Results

3.1 Hyperparameter tuning 

This study optimized the number of estimators and 

maximum depth hyperparameters of the RF model using 

5-fold cross-validation and the GridSearchCV method.

The results were visualized using a heatmap to display the

accuracy for various settings of these two parameters

(Figure 3). The optimal hyperparameter values were 500

for the number of estimators and 29 for the maximum

depth, achieving an average test accuracy of 89.34%.

Figure 3. Mean test accuracy of the RF model on the validation 

dataset with different values for its two main hyperparameters. 

3.2 Model validation and performance assessment 

The performance of the RF model was assessed using three 

evaluation metrics: ROC-AUC, FoM, and F1 score. The 

evaluation metrics, with a ROC-AUC of 0.895, a FoM of 

0.808, and an F1 score of 0.894, confirmed the RF model’s 

strong performance in accurately identifying forest fire-

prone areas. 

3.3 Forest fire susceptibility maps 

The primary objectives of this study were to provide forest 

fire susceptibility maps and evaluate the impacts of climate 

change on forest fire susceptibility in the study area over 

the next 30 years (2021-2050). Accordingly, after training 

and testing the RF model using data from 1980 to 2020, 

the FWI layer was updated annually for years 2021-2050 

based on the respective scenario and then input into the 

model to predict annual forest fire susceptibility across the 

study area. The predicted susceptibility values were then 

classified into five categories, from very low to very high, 

using the natural breaks classification method in ArcGIS 

Pro 3.3.0. The percentage of the area within each 

susceptibility class was calculated over 30 years (2021-

2050) for each climate scenario. Due to the minimal 

variations in the area percentage of susceptibility classes 

between the two scenarios (Figure A1. Appendix A), we 

only depicted the area percentage of susceptibility classes 

under the RCP 8.5 scenario (Figure 4), assuming current 

emissions trends continue. Additionally, forest fire 

susceptibility maps for 2030, 2040, and 2050 under the 

RCP 8.5 scenario were created to spatially visualize fire 

susceptibility across the study area (Figure 5).
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Figure 4. Area percentage of forest fire susceptibility classes from 2021 to 2050 under the RCP 8.5 scenario. 

 

Figure 5. Forest fire susceptibility maps generated for 2030, 2040, and 2050 under the climate change scenario RCP 8.5. 

 

The "Very Low" class dominates the landscape, reflecting 

consistently low fire susceptibility over the 30 years, with 

some fluctuations. A notable portion of the area falls under 

the "Low" class, which demonstrates moderate variability 

but remains generally stable. The "Moderate" class covers 

a smaller area but shows significant variability, indicating 

fluctuating conditions. The "High" class occupies a very 

limited area, displaying considerable variability and 

inconsistent high susceptibility. Lastly, the "Very High" 

class represents the smallest area, with relatively low 

variability, suggesting a limited yet stable very high 

susceptibility. This pattern suggests that forest fire 

susceptibility classes varied over time, potentially 

influenced by changes in climate. However, no clear trend 

was observed to indicate a general increase or decrease in 

susceptibility within these classes during the study period. 

Besides, our findings revealed minimal differences in the 

area percentages of susceptibility classes between the two 

scenarios RCP 4.5 and RCP 8.5, indicating that forest fire 

susceptibility classes remain relatively stable across both 

climate change scenarios. 

3.4 Assessment of factors’ importance on forest fires 

The study identified key drivers of forest fire susceptibility 

using the RF model’s feature importance analysis. Figure 

6 depicts the relative importance of factors in predicting 

forest fire susceptibility. The feature importance analysis 

revealed that FWI, live biomass, and dead biomass were 

the top three factors affecting forest fire susceptibility, 

contributing 21.8%, 14.28%, and 11.35% to the prediction, 

respectively. 

 
Figure 6. The relative importance of factors on forest fire 

susceptibility prediction. 

4. Discussion 

Forests are essential natural resources, critical in 

sustaining ecosystems (Suryabhagavan et al. 2016), and 

supporting habitat continuity and species diversity. 

However, forest fires pose the greatest threat to these 

ecosystems, significantly contributing to environmental 

transformation (Khan and Eslamian 2022). Forest fires are 
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a recurring issue globally, making the spatial analysis of 

fire events and identification of susceptibility zones crucial 

for enhancing prevention and prediction efforts (Tian et al. 

2013), a need that has become increasingly important over 

the past decade (Miller and Ager 2012). Additionally, the 

potential impact of climate change on fire regimes (Miller 

and Ager 2012) underscores the need for accurate FFSM 

in boreal forests. Given the strong connection between fire 

and climate, as well as its crucial role in the lifecycle of 

Canada’s forests (Wotton et al. 2010), this study mainly 

focused on investigating the impacts of climate change on 

forest fire susceptibility in the boreal forests of Quebec, 

Canada. To accomplish this, this study employed an RF 

model that integrated various environmental, ecological, 

and meteorological factors, building on the potential 

benefits of incorporating diverse factors to enhance the 

accuracy of the FFSM (Pourghasemi 2016; Sachdeva et al. 

2018; Shahfahad et al. 2022). 

Recent research has focused on employing more robust 

methodologies to create precise and accurate forest fire 

susceptibility maps. The remarkable accuracy and 

potential of ML models in FFSM have been demonstrated 

in prior studies (Oliveira et al. 2012; Sachdeva et al. 2018; 

Rihan et al. 2023). Accordingly, this study in alignment 

with earlier studies (Gharakhanlou and Perez 2022; 

Gharakhanlou and Perez 2023) demonstrated the potential 

of the RF model in spatial susceptibility assessment, 

specifically in FFSM (Oliveira et al. 2012). While earlier 

studies (Stocks et al. 1998; Flannigan et al. 2009; Wotton 

et al. 2010), emphasized a growing susceptibility of forests 

to fires in Canada over time, our findings showed temporal 

fluctuations in the susceptibility of Quebec’s boreal forest 

to fires. Our results indicated no clear pattern suggesting a 

general increase or decrease in forest fire susceptibility 

between 2021 and 2050. Additionally, this study sought to 

identify the key factors influencing forest fire 

susceptibility. Our findings revealed that FWI, live 

biomass, and dead biomass were the three most influential 

factors in determining forest fire susceptibility, 

contributing 21.8%, 14.28%, and 11.35% to the prediction, 

respectively. Our findings aligned with previous studies 

(Bedia et al. 2015; Atalay et al. 2024), emphasizing the 

significant influence of FWI in FFSM. 

5. Conclusion

Forest fires have a major impact on the structure and 

function of the boreal forest. Since fire ignition and spread 

are heavily influenced by weather, climate change is likely 

to significantly affect fire activity and, consequently, the 

structure of the boreal forest. Accordingly, this study 

examined the fire susceptibility of Quebec’s boreal forest 

under two climate change scenarios (RCP 4.5 and RCP 

8.5) for the next 30 years. Using an RF model, the study 

incorporated various environmental, ecological, and 

meteorological factors, achieving strong model 

performance (ROC-AUC of 0.895, FoM of 0.808, F1 score 

of 0.894). Findings revealed that fire susceptibility classes 

varied over time but showed no clear trend of increasing 

or decreasing susceptibility. Additionally, minimal 

differences were observed between the two climate 

scenarios, suggesting stability in the susceptibility of 

Quebec’s boreal forest to fires. This study also identified 

key factors influencing fire susceptibility in Quebec’s 

boreal forest, with FWI, live biomass, and dead biomass 

being the most significant, contributing 21.8%, 14.28%, 

and 11.35%, respectively. 

This study by evaluating the impacts of climate change on 

current and future forest fires and providing forest fire 

susceptibility maps contributes in several manners: i) it 

assists in identifying fire-prone areas, allowing for the 

prioritization of regions that need targeted fire prevention 

measures, such as firebreak creation, to mitigate the risk of 

large fires; ii) the susceptibility maps aid in the efficient 

allocation of firefighting resources, ensuring vulnerable 

areas are properly monitored and prepared for potential 

fires; iii) by revealing climate-induced changes in fire risk, 

it supports proactive forest management practices, such as 

adjusting tree density or species composition to reduce fire 

hazards; and iv) by projecting forest fire susceptibility over 

the next 30 years, it assists in predicting fire trends, 

enabling authorities to plan more effectively for future fire 

seasons. 

6. Appendix A. Differences in forest fire

susceptibility across climate change scenarios

Figure A1 shows minimal differences in the area 

percentages of forest fire susceptibility classes between the 

RCP 4.5 and RCP 8.5 scenarios.

Figure A1. Differences in forest fire susceptibility across climate scenarios.
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