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Abstract: Assessing the similarity between polygonal shapes is a fundamental problem in geographic information 

science (GIS) with applications in spatial data quality assessment, feature matching, and cartographic generalization. 

This paper introduces a novel and computationally efficient shape similarity measure tailored for comparing building 

footprints in OpenStreetMap (OSM). Unlike traditional methods that rely on complex transformations such as Fourier 

descriptors or graph-based techniques, our approach is based on the average boundary distance between two polygons 

after applying translation and rotation corrections. This method is both easy to implement and computationally light, 

making it suitable for large-scale applications. The proposed measure demonstrates strong alignment with human 

perception of shape similarity. However, a notable limitation is that it tends to produce similarity values predominantly 

within the range of 70% to 100%. This behaviour arises because the measure emphasizes overall shape alignment while 

overlooking finer local discrepancies. As a result, subtle deviations, such as missing details or minor geometric 

distortions, may not significantly impact the computed similarity score. Despite this drawback, the method remains a 

practical and efficient alternative for evaluating shape similarity in large spatial datasets, particularly where 

computational simplicity and scalability are prioritized. Future works can explore potential refinements to enhance 

sensitivity to local shape variations while maintaining computational efficiency. 
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1. Introduction 

With the advent of Web 2.0 technologies, citizens gained 

the ability to share data over the internet (Goodchild, 

2007). This development gave rise to diverse projects that 

rely on the active contributions of individuals acting as 

sensors to collect and share data with different 

motivations (Goodchild, 2007; Lotfian, Ingensand and 

Brovelli, 2020, 2021). OpenStreetMap (OSM) is one of 

the most prominent examples of such projects. However, 

since any contributor, regardless of certification or formal 

knowledge in geomatics, can edit OSM data, the quality 

of its datasets has become a significant challenge of 

research (Fan et al., 2014; Arsanjani, Mooney and Zipf, 

2015; Törnros et al., 2015; Brovelli and Zamboni, 2018; 

Moradi, Roche and Mostafavi, 2022). 

In OSM, buildings are added with the tag ‘building = yes’ 

to the project. Numerous measures have been developed 

to assess the quality of OSM building data across various 

dimensions of spatial data quality, including 

completeness (Hecht, Kunze and Hahmann, 2013; Fan et 

al., 2014; Herfort et al., 2023; Moradi, Roche and 

Mostafavi, 2023b; Ullah et al., 2023), positional accuracy 

(Fan et al., 2014; Brovelli et al., 2016; Brovelli and 

Zamboni, 2018; KÜÇÜK and ANBAROĞLU, 2020), 

temporal accuracy (Hecht, Kunze and Hahmann, 2013; 

Moradi, Roche and Mostafavi, 2023b), shape accuracy 

(Fan et al., 2014; Fan, Zhao and Li, 2021; Xu et al., 

2021; Ďuračiová, 2023), and semantic accuracy (Nowak 

Da Costa, 2016; Basaraner, 2020). Among these, 

measures designed to evaluate shape accuracy are 

particularly complex, as assessing the degree of similarity 

between two polygons still presents a challenging 

problem. In addition to spatial data quality, shape 

similarity is used for feature matching, classification, 

spatial inquiry, and cartographic generalization (Xu et al., 

2017; Lu et al., 2024). 

This paper provides a comprehensive review of existing 

methods for assessing shape similarity in GIS, with a 

specific focus on their application to OSM building 

footprints. Subsequently, it introduces a novel and easy-

to-implement method to evaluate the similarity of 

polygons, offering new insights into the degree to which 

two shapes align.  

The remainder of this paper is structured as follows: 

Section 2 reviews related works, Section 3 presents the 

fundamentals of shape similarity, Section 4 details the 

proposed method, Section 5 discusses the case study and 

results, and Section 6 concludes the study with future 

directions. 

2. Related Works 

Shape accuracy is the degree of similarity between shape 

A and shape B. A measure for polygonal shape accuracy 

is defined as a cost function d(A, B) that is associated 

with the two polygons and quantifies the degree to which 
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the two shapes are dissimilar (Arkin et al., 1991). In other 

words, this measure should describe the similarity of two 

polygon boundaries using a single number and it should 

be consistent with human cognition of the similarity of 

the two shapes (Ai et al., 2013). 

Arkin et al., (1991) proposed that if we represent the 

boundary of two polygons as a series of lengths and 

angles (for each edge), we can then use turning function 

ƟA(s) to quantify their similarity. The turning function 

ƟA(s) measures the angle of counterclockwise tangent as 

a function of arc-length, measures from a point on the 

boundary of A (Arkin et al., 1991). By using turning 

function each polygon is represented as a series of 

horizontal line segments that the Y of each of them is 

equal to the tangent of the edge that they represent and 

their length is the length of that edge (Arkin et al., 1991). 

Finally, d(A, B) is the distance between these two 

representations of polygons.  

Ai et al., (2013) proposed a shape similarity method 

based on Fourier descriptor. It represents the boundary of 

a polygon shape as a periodic function, then, the distance 

between normalized Fourier coefficients is used as a 

measure of shape similarity. This method captures the 

main shape characteristics and ignores the details of the 

two shapes (Ai et al., 2013). 

Since complex spatial features are stored as 

multipolygons, Xu et al., (2021) proposed a method 

based one similarities in shape and distribution of 

polygons that is capable of measuring the similarity 

between multipolygons. This method uses position graph 

to denote the distribution of subpolygons. 

Since most of shape similarity methods are developed for 

simple polygons, Xu et al., (2017) proposed a method 

capable of measuring shape similarity between complex 

polygons where there are several holes in the polygon. 

This method uses angles and distances to represent a 

polygon with its possible holes, then, it uses position 

graphs and Fourier transformation to measure the 

similarity between them (Xu et al., 2017). The strength of 

this method is that when holes are represented in angles 

and distances, this representation is invariant under 

polygon translation, rotation and change of its scale. 

However, this method is computationally heavy. 

 Fan, Zhao and Li, (2021) converted polygons into grid 

representation in which the contour feature is represented 

as a multiscale statistic feature. This method, unlike 

previous methods, does not measure the distance between 

two representations of polygons (Fourier transformation 

or turning function representations). Instead, it defines the 

similarity as the correlation between textures extracted by 

shape features (Fan, Zhao and Li, 2021). This method 

showed a better accuracy than turning function and 

Fourier descriptor methods (Fan, Zhao and Li, 2021). 

Fréchet distance is proposed by Shahbaz, (2013) as an 

effective similarity measure for spatial representation of 

features. This method unlike Hausdorff distance, takes 

the ordering of the points along the curves. This feature 

makes this shape similarity measure suitable for GIS 

applications where sequence of traversal matters, such as 

time-series analysis (Shahbaz, 2013). This measure is 

based on the minimum distance needed to traverse the 

two shapes without backtracking (Shahbaz, 2013). This 

method is robust against noise. 

One of the most recently proposed methods of shape 

similarity, introduced by Lu et al., (2024), is based on 

graph edit distance. This method first constructs a graph 

for each building contour, then measures a cost function 

based on the number of substitutions and deletions 

required to transform Graph 1 into Graph 2 (Lu et al., 

2024). Finally, this cost function quantifies the 

dissimilarity between the two polygons (Lu et al., 2024). 

In the context of OSM building footprint shape accuracy 

analysis, several research works have been done. Turning 

function method is widely used by research works 

(Mooney, Corcoran and Winstanley, 2010; Fan et al., 

2014; Müller, Iosifescu and Hurni, 2015; Hung, Kalantari 

and Rajabifard, 2016; Zhou et al., 2018) to measure the 

shape accuracy of OpenStreetMap buildings footprints.  

3. Fundamentals of Shape Similarity

If A and B are two polygonal shapes in the plane, then 

their similarity can be computed using a cost function 

d(A, B). Arkin et al., (1991) argued that such a measure 

should satisfy the following four properties to be 

consistent with human cognition: 

• d(A, B) ≥ 0 for all A and B.

• d(A, B) = 0 only and only if A=B.

• d(A, B) = d(B, A).  (symmetry)

• d(A, B) + d(B, C) ≥ d(A, C). (triangle inequality)

Additionally, since we want that this measure only 

represents the dissimilarity of the two shapes (boundaries 

of shapes), d(A, B) should be invariant under translation, 

rotation and change of scale (Arkin et al., 1991; Xu et al., 

2017). More importantly, this measure should align with 

human intuitive judgment about the dissimilarity of the 

two shapes. The proposed measure adheres to these 

properties. 

4. The Proposed Shape Similarity Measure

The proposed method measures shape similarity based on 

the average boundary distance between two polygons 

after applying corrections to eliminate the effects of 

translation, rotation, and scale differences between 

corresponding polygons in the two datasets. The 

approximate average distance between corresponding 

points on the polygon boundaries is then estimated using 

the area enclosed between the two boundaries. Figure 1 

illustrates the steps involved in feature matching, 

geometric corrections, and the main shape similarity 

algorithm. 

4.1 Preprocessing 

Before applying any shape similarity algorithm, it is 

necessary to perform feature matching between the OSM 

building footprints and the reference footprints. While 

feature matching is not the focus of this research, it can 

be performed by measuring the area overlap between 
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polygons (Fan et al., 2014), calculating the distance 

between their centroids (Hecht, Kunze and Hahmann, 

2013), or using more accurate algorithms (Moradi, Roche 

and Mostafavi, 2023a). Since the shape similarity 

measure should be invariant to rotation, translation, and 

scale, corrections must first be applied to eliminate the 

effects of these transformations. However, in the case of 

OSM building footprints, scale mismatch is not a concern 

(Moradi, Roche and Mostafavi, 2023b), and therefore, no 

correction for scale is required. 

Figure 1. Workflow of the preprocessing steps and the proposed 
shape similarity algorithm. 

4.1.1 Feature matching 

To determine which reference polygon should be 

compared to each OSM polygon, a feature matching 

algorithm must be applied. If the correspondence type is 

1:0, it indicates that the OSM building has no equivalent 

in the reference dataset, and therefore, the shape 

similarity is undefined in this case. For 1:1 

correspondence, where there is exactly one polygon in 

OSM and one in the reference, the necessary corrections 

can be applied, and the shape similarity measure can be 

calculated. 

In cases where one polygon in OSM corresponds to 

multiple polygons in the reference dataset (1:n), the 

reference polygons must be dissolved into a single 

polygon before proceeding with the process. For the 

many-to-many (m:n) case, both sets of polygons must be 

dissolved into a single polygon before continuing because 

the proposed algorithm in its current form is not capable 

of measuring shape similarity between multipolygon 

geometries.  

4.1.2 Rotation correction 

Since OSM polygons are often generalized or may 

contain errors compared to the reference polygons, and 

there can be mismatches in the number of edges or 

vertices, calculating the rotation angle directly is 

challenging. To address this, the rotation angle is 

calculated using the minimum bounding boxes (MBBs) 

of the two polygons rather than the polygons themselves. 

This approach reduces the impact of digitization errors on 

the calculated angle. 

The rotation angle is defined as the angle between the 

two longer lines connecting the midpoints of opposite 

edges in the MBBs (see Figure 1). Once the rotation 

angle is determined, a rotation correction is applied to the 

OSM polygon to eliminate the impact of rotation on 

shape dissimilarities. Specifically, all vertices of the OSM 

polygon are rotated by 𝜃 degrees using the following 

formula: 

[
𝑥′
𝑦′

] =  [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)

] =  [
𝑥
𝑦]  (1) 

Before applying the rotation correction, the centroid of 

the polygon should be translated to the origin. After the 

rotation, the polygon should be translated back to its 

original centroid location. 

4.1.3 Translation correction 

Since digitizing aerial images is one of the most common 

methods of data production in OSM, there are some 

systematic errors associated with OSM data. One 

common issue is that OSM contributors often digitize the 

roof outlines of buildings instead of their actual 

footprints. A potential error arises when the roof outline 

is displaced far from the building's footprint, particularly 

when the building is far from the centre of the aerial 

image. A translation correction should be applied to the 

vertices of the OSM polygon using as: 

[
𝑥𝑖′

𝑦𝑖 ′
] = [

𝑥𝑂𝑆𝑀 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 − 𝑥𝑅𝑒𝑓.  𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑

𝑦𝑂𝑆𝑀 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 − 𝑦𝑅𝑒𝑓.  𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑
] + [

𝑥𝑖

𝑦𝑖
]   (2) 

where xi, yi are the coordinates of i-th vertex of OSM 

polygon and 𝑥𝑂𝑆𝑀 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ,   𝑥𝑅𝑒𝑓.  𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑  are the x

coordinates of the centroid of the OSM polygon and the 

centroid of its corresponding reference polygon, 

respectively.    

Figure 2 illustrates an example of an OSM building and 

its corresponding reference polygon, highlighting the 

need for rotation and translation corrections. 
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Figure 2. (a) The OSM polygon with its corresponding 
reference polygons. (b) The minimum bounding boxes of the 
two polygons. (c) The angle between the two bounding boxes. 

4.2 Proposed Algorithm 

If the two shapes are identical, we expect that after 

applying rotation, translation, and scale corrections, the 

boundaries of both polygons will overlap perfectly. In 

this ideal scenario, shape dissimilarity is zero. However, 

in real-world cases, the two boundaries typically do not 

align perfectly. 

Here we propose a method where the average distance 

between the two boundaries, after applying the 

corrections, serves as an indicator of shape dissimilarity. 

However, computing this average distance is challenging. 

One might assume that simply generating sample points 

along the boundary of the OSM polygon and calculating 

their distances to the boundary of the reference polygon 

would be sufficient. However, our implementation of this 

method in our study area revealed that it can overlook 

significant shape dissimilarities in certain cases (see 

Figure 3). 

Figure 3. Potential error in average distance calculation when 
generating sample points on the OSM boundary. 

The issue arises because the average distance should be 

computed between corresponding points on the two 

polygons, rather than the nearest point on the other 

polygon's boundary. Figure 3 illustrates this issue. P3 is 

one of the sample points generated on the boundary of the 

OSM polygon. If we calculate its distance to the 

reference polygon, d₁ represents the shortest distance 

between P3 and the reference polygon. However, to align 

with human perception of shape dissimilarity, the 

distance between corresponding points on the two 

polygons (d₂) should be considered instead. 

On the other hand, finding corresponding points on the 

boundaries of the two polygons can be challenging, as 

OSM shapes may be highly generalized or differ 

significantly from the reference polygons. 

To address this issue, we propose using the area between 

the two polygons to approximate the average distance 

between their boundaries. 

Figure 4. Average distance calculation based on the area of 
trapezoid T. 

Let P2
Ref and P3

Ref be the corresponding points for P2 and 

P3 on the reference polygon. The line connecting P2 and 

P3, and the line connecting P2
Ref and P3

Ref, are not 

necessarily parallel. However, for approximation 

purposes, we assume that these two lines are parallel. In 

this case, T forms a trapezoid, and d2 represents its height. 

d2 can then be calculated as: 

𝑑2 ≈
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑇

𝐷𝑖𝑠𝑡𝑃2−𝑃3
+𝐷𝑖𝑠𝑡

𝑃2
𝑅𝑒𝑓

−𝑝3
𝑅𝑒𝑓

2

    (3) 

where 𝐷𝑖𝑠𝑡𝑃2−𝑃3
 represents the distance between P2 and

P3 along the perimeter of the OSM polygon, and 

𝐷𝑖𝑠𝑡
𝑃2

𝑅𝑒𝑓
−𝑝3

𝑅𝑒𝑓  represents the corresponding distance 

along the perimeter of the reference polygon. Thus, the 

average distance between the corresponding points of the 

two polygons is approximately equal to the area between 

their boundaries divided by the average of their 

perimeters. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≈
𝐴𝑟𝑒𝑎 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝑂𝑆𝑀+𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝑅𝑒𝑓

2

 (4) 
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where the area between the boundaries is defined as the 

sum of the area of the OSM polygon that lies outside the 

reference polygon and the area of the reference polygon 

that lies outside the OSM polygon. In GIS applications, 

the difference operation generates a polygon representing 

the portion of the first polygon that does not overlap with 

the second polygon. Thus, the average distance can be 

expressed as: 

𝐴𝑣. 𝐷𝑖𝑠𝑡. ≈
𝐴𝑟𝑒𝑎 (𝐷𝑖𝑓𝑓𝑅𝑒𝑓,𝑂𝑆𝑀)+𝐴𝑟𝑒𝑎 (𝐷𝑖𝑓𝑓𝑂𝑆𝑀,𝑅𝑒𝑓)

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝑂𝑆𝑀+𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝑅𝑒𝑓

2

 (5) 

Figure 5 illustrates the difference between the OSM and 

reference polygons, as well as the difference between the 

reference polygon and the OSM polygon. In this 

example, the area of the OSM polygon extending beyond 

the reference polygon is larger, as most parts of the OSM 

polygon extend beyond the reference polygon. 

Figure 5. Area between the OSM building footprint and 
corresponding reference footprint. 

The average distance is always greater than zero and 

indicates the degree of shape dissimilarity between the 

two polygons. The shape similarity is then calculated 

using the following formula: 

𝑠ℎ𝑎𝑝𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  1 − 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑚𝑎𝑥 𝑟𝑎𝑑𝑢𝑖𝑠𝑂𝑆𝑀,𝑅𝑒𝑓 
  (6) 

where max radius is the largest radius among the 

circumscribed circles of the reference polygon and the 

OSM polygon (see Figure 6).  

Figure 6. Sample points on OSM polygon, and OSM and 
reference circumscribed circles. 

This measure ensures that similarity values range 

between 0 and 1, where 1 indicates identical shapes, and 

values closer to 0 represent greater dissimilarity. 

5. Case Study

The proposed algorithm is implemented in python and is 

used to measure the shape accuracy of OSM buildings in 

Quebec City. 

5.1 Study area 

Quebec City, the capital of the province of Quebec in 

Canada, is home to nearly 500,000 residents. According 

to our reference data, the study area includes 171,648 

buildings. The study area is defined as a rectangular 

region with the following coordinates: Left: −71.5, 

Bottom: 46.7, Right: −71.0, Top: 46.9. 

5.2 Data Description and Preprocessing 

The OSM data was downloaded as of January 1, 2025, 

using the OSMnx Python package for Quebec City, based 

on the coordinates mentioned in the previous section. The 

reference data was obtained from the open data portal of 

the Government of Canada: 

https://open.canada.ca/data/en/dataset/be7053a8-7122-

4514-91a2-5a8f5a60b341 

The completeness of the OSM data, based on the number 

of buildings, is 43.49%, while the completeness based on 

the total area of building footprints in the two datasets is 

57.14%. This discrepancy arises because the average area 

of OSM building footprints is 295.95 m², compared to 

225.27 m² for the reference building footprints. Larger 

buildings tend to attract more attention from OSM 

contributors compared to smaller buildings, which could 

explain this difference. 

Figure 7 illustrates the percentage distribution of building 

footprint areas in the two datasets. The figure shows that 

in the OSM dataset, there is a higher percentage of 

buildings with footprints larger than 1000 m². However, 

for buildings with footprints smaller than 500 m², the 

reference dataset contains a higher percentage. This 

pattern supports the observation that larger buildings are 

more frequently digitized in OSM, while smaller 

buildings may be underrepresented. 

Figure 7. Percentage distribution of building footprint areas in 
the two datasets. 
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Feature matching was performed between the two 

datasets. In most cases (approximately 90%), the 

buildings have a 1:1 correspondence, which simplifies the 

comparison of the two shapes. In instances where 

multiple reference buildings correspond to a single 

building in OSM, the reference polygons are dissolved 

into a single polygon to ensure the shape comparison 

remains feasible. 

The translation correction was applied to OSM polygons. 

The average displacement in the 𝑋-direction is 1.06 m, 

and in the 𝑌-direction is 1.55 m. The scatter plot of the 

centroid displacements is shown in Figure 8. Figure 8 

indicates that most of the OSM centroids are on the left 

side of the centroids of the reference polygons. 

Figure 8. Scatter plot of the centroid displacement of the OSM 
buildings in comparison to the reference dataset. 

After applying the necessary corrections, the shape 

similarity algorithm was implemented using the 

GeoPandas Python package. The implementation is 

straightforward, as all required operations (e.g., centroid 

calculation, difference computation, minimum bounding 

box, etc.) are built-in functionalities of GeoPandas and 

other Python libraries. 

5.3 Results and Discussion 

The shape accuracy values for Quebec City building 

footprints are mostly between 0.7 and 1, as the proposed 

method is not sensitive to minor dissimilarities between 

the two shapes. Figure 9 illustrates the histogram of shape 

similarity values. 

Based on Figure 9, it is evident that in most cases, the 

proposed method calculates a relatively high similarity 

value. While this can be considered a disadvantage, it is 

an expected behaviour for a measure based on average 

distance, as it is not highly sensitive to small details. 

Figure 9. Histogram of the values of the proposed shape 
similarity measure. 

We benchmarked the proposed shape similarity measure 

against two well-established measures: Elliptic Fourier 

Descriptors (EFD) and the Fréchet-distance shape 

similarity measure. 

• Elliptic Fourier Descriptors (EFD).

We extracted the Fourier coefficients of each polygon 

contour with the “pyefd” library 

(https://github.com/hbldh/pyefd). Using the first 𝑛 = 30 

harmonics of the normalised boundary, we formed a 

coefficient vector for every shape and quantified 

dissimilarity as the Euclidean distance between the two 

vectors. 

• Fréchet distance

The “shape-similarity” library 

(https://github.com/nelsonwenner/shape-similarity) 

computes the continuous Fréchet distance between the 

ordered boundary point sequences of the two polygons. 

This distance is then normalised by the larger of the two 

perimeters, yielding a score in [0,1] where 0 indicates 

identical shapes and 1 denotes maximal dissimilarity. 

Since the Fréchet measure is a dissimilarity (smaller 

values denote greater similarity), we converted it to a 

similarity score by computing 1 – (Fréchet distance). This 

aligns with the scale of the proposed method. 

Both reference methods apply the same pre-processing 

steps used in the proposed approach: translation to a 

common centroid, rotation to the principal axis, and 

isotropic scaling. It ensures that any differences in the 

resulting scores arise solely from the similarity formula 

itself rather than from other factors.  

Table 1 presents selected OSM and reference polygons to 

illustrate the compatibility of the proposed method with 

human cognition and perception of shape similarity. 

In Table 1, in the first and second examples, the OSM 

polygon is a generalized version of the reference polygon, 

with many details that have not been digitized. As a 

result, the shape similarity based on the proposed method 

is below 90%.  

Fourier Descriptors and Fréchet Distance produced much 

lower similarity degrees in comparison to the proposed 

method. 
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In the third example, the shape similarity is 99.6%, which 

aligns with human perception of how similar these two 

shapes are. The two other methods also generated shape 

similarity values around 97% and 99.4%, respectively.  

 In the fourth example, only one part of the reference 

shape is missing in OSM.  

Since the proposed method is not sensitive to small 

dissimilarities, the calculated shape similarity is 97%. 
Fréchet Distance is much more sensitive to big shape 

dissimilarities. The proposed method is based on the average 

distance and is not greatly affected by small shape mismatches. 

id OSM and Reference shapes 
Shape Similarity 

Proposed Method Fourier Descriptors Fréchet Distance 

1 0.89 0.69 0.58 

2 0.84 0.66 0.48 

3 0.996 0.977 0.994 

4 0.97 0.87 0.73 

Table 1. Examples of the OSM polygon (red) and corresponding reference polygon (black) with their shape similarity 

value. 

6. Conclusions

This paper introduced a novel shape similarity measure 

for comparing polygonal geometries, particularly applied 

to OpenStreetMap (OSM) building footprints. The 

proposed method is based on the average boundary 

distance between two polygons, making it both 

computationally efficient and straightforward to 

implement. Unlike more complex shape similarity 

techniques, which require advanced transformations or 

graph-based methods, the simplicity of the proposed 

approach makes it practical for large-scale spatial 

datasets. 

One key advantage of the proposed measure is its 

alignment with human perception of shape similarity. The 

results indicate that the measure effectively captures the 

overall similarity between building footprints, making it a 

useful tool for applications such as data quality 

assessment, feature matching, and cartographic 

generalization. Additionally, since scale and rotation are 

not major factors in OSM buildings, the main 

transformation required is translation correction, further 

simplifying its application in this context. 

Another advantage of the proposed method is its reliance 

on familiar GIS primitives (centroid position, boundary 

distance, and enclosed area), whereas Fourier-based 

techniques depend on less intuitive frequency-domain 

coefficient distances. 

However, the method has some limitations. First, most 

shape similarity values fall between 0.7 and 1.0, making 

it less effective in differentiating varying degrees of 

similarity. This is because the measure is based on 

average boundary distance, which tends to overlook small 

differences in shape details. Second, the method is not 

designed to handle complex polygons with holes or 

multiple parts. In this study, this issue was addressed by 

dissolving polygons into single geometries, but more 

sophisticated solutions could be explored in future 

research. 

Advances in Cartography and GIScience of the International Cartographic Association, 5, 22, 2025. 
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada. This contribution underwent 
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-5-22-2025 | © Author(s) 2025. CC BY 4.0 License

7 of 9



For future improvements, modifications could be made to 

enhance the measure’s sensitivity to small shape 

dissimilarities without sacrificing computational 

efficiency. Additionally, researchers could explore 

alternative lightweight similarity measures that remain 

easy to implement while capturing finer shape variations. 

Despite these limitations, the proposed method offers a 

practical and scalable solution for shape similarity 

analysis in GIS applications, particularly when working 

with large datasets such as OSM building footprints. 
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