
Flexible Algorithms for Visualizing Geophylogenies

Thomas C. van Dijk∗, Bettina Speckmann, Edwin Steenkamer

TU Eindhoven - t.c.v.dijk@tue.nl, b.speckmann@tue.nl, e.j.steenkamer@student.tue.nl

* Corresponding Author

Abstract: Geophylogenies enrich the leaves (species) of a phylogenetic tree with geographic locations (sites) that
are biologically meaningful, such as sightings, habitats, or fossil finds. To extract geographic patterns from this data,
geophylogenies are customarily visualized using a map to indicate the locations, a tree drawing for the phylogenetic
tree, and some sort of linking mechanism, such as labels or leaders, which matches leaves and locations. So far, such
geophylogeny visualizations are mostly created without sophisticated algorithmic assistance. An exception is recent
work by Klawitter et al. (2023) which focusses mainly on point sites as geographic locations, tree drawings with fixed
leaf positions on a line, and linking via leaders. In this paper we significantly extend their work by adding additional
flexibility to all components of the visualization pipeline: we support not only point, but also region sites, the locations of
leaves are adaptive to the data and can lie on either a line or a circle, and the locations are visually linked to leaves without
the need for explicit connections via leaders. We implemented our algorithms and evaluated them experimentally. Our
results show that the added flexibility indeed results in visualizations of higher quality for datasets of up to medium size;
for large datasets the leaves of the phylogenetic tree tend to be so crowded around the map that the difference between
adaptive and fixed leaf positions becomes negligible. However, the possibility of placing leaves on a circle and the linking
without leaders still improve the readability of our visualizations when compared Klawitter et al. (2023).

Keywords: geophylogeny, algorithm, map design, geovisualization

1. Introduction

Phylogenetics studies the evolutionary history of species
and organisms to gain a better understanding of the evolu-
tion of life. This evolution of species is often visualized as
a phylogenetic tree, also called a phylogeny (Baum et al.,
2008). The leaves of this tree represent the most modern
species and internal nodes correspond to speciation events
where a single species splits into multiple distinct species.

Geography can play a role in such speciation events and
Soininen et al. (2007) suggest that Tobler’s first law of ge-
ography1 also holds for biological systems. A phylogeo-
graphic tree (or: geophylogeny) enriches the leaves of a
phylogenetic tree with geographic data (sites) that are bi-
ologically meaningful for the corresponding species, such
as fossil finds, observations, or known habitats. Geophy-
logenies are often visualized using a map R which depicts
the set P of (point or area) sites, a tree drawing of the
corresponding phylogenetic tree T , and some form of link-
ing between the leaves and their sites. See Figures 1-3 for
examples from the biological literature; leaders as well as
labels and colours are used to link leaves to sites.

There are different ways in which the tree T is drawn along-
side R. Most commonly, the leaves of T are projected on a
boundary of R (see Figures 1 and 2) and the tree is drawn
orthogonally as a rectangular cladogram. But there are
also examples of circular drawings, referred to as inner-
circular cladograms, where the leaves of T are arranged

1“Everything is related to everything else, but near things are more
related than distant things.” Tobler (1970)

on a circle around R; see Figure 3. The tree T is always
drawn in a planar manner, without crossings. The leaves
of T can hence be arranged only in those orders which are
compatible with the structure of T .

The biggest challenge when visualizing geophylogenies lies
in the linking of leaves to sites. Explicit linking via leaders
is unambiguous but has the disadvantage that the leaders
obscure parts of the map R and potentially also other sites.
Furthermore, since the positions of the leaves must respect
the tree structure, it often not possible to find an order of
the leaves such that the leaders do not cross. Linking with
leaders is hence not a viable option when there are more
than a handful of leaves and sites.

Implicit linking commonly uses colours or labels to match
sites to leaves. For the reader to make the correct connec-

Figure 1. Geophylogeny with leaders (Angst et al., 2023).

Advances in Cartography and GIScience of the International Cartographic Association, 5, 34, 2025.
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-5-34-2025 | © Author(s) 2025. CC BY 4.0 License

2 of 8

Figure 2. Implicit geophylogeny (Bentley et al., 2021).

tions, leaves need to be placed in close proximity to the
sites. That is, the order of the leaves should match the spa-
tial distribution of the sites well. See, for example, Figure
2: the left-to-right order of the leaves matches the order of
the sites fairly closely and hence the association between
leaves and sites is strong. In the remainder of this paper we
focus on implicit linking with colours.

Definitions and Notation. We largely follow the defini-
tions and notation introduced by Klawitter et al. (2023).
A rooted binary tree (the phylogenetic tree) T has vertex
set V (T) and a set of n leaves L(T) = {l1, . . . , ln} ⊂V (T).
We denote by T (v) the subtree rooted at vertex v and by
n(v) = |L(T (v))| the number of leaves in T (v). An em-
bedding of T is defined by the left-to-right order of the
children of each internal vertex. T is always drawn planar,
hence an embedding of T uniquely specifies a left-to-right
or circular order of the leaves L(T).

Let P = {p1. . . . , pn} be a set of n geographic point or
polygon sites. All sites are contained in a bounding area B,
which can either be an axis-aligned rectangle or a disk. If B
is a rectangle, then T is drawn as a rectangular cladogram.
That is, all leaves are drawn on the upper linear boundary
of B, at the same y-coordinate, and T is drawn downward
planar: all edges of T point towards the leaves and no two
edges cross. When B is a disk, then T is drawn as a pla-
nar inner-circular cladogram, that is, all edges of T point
towards the center of B and no two edges cross; all leaves
are placed on the circular boundary of the disk.

Figure 3. Inner-circular geophylogeny (Pan et al., 2022).

A geophylogeny G then consists of a phylogenetic tree T (G),
a boundary, a set of sites P(G), and a one-to-one map-
ping between L(T (G)) and P(G). The indices indicate
this mapping, so li ↔ pi, for all i ∈ {1, ..,n}. For ease of
notation, we will use T and P instead of T (G) and P(G).

Problem Statement. Given a geophylogeny G our goal is
to construct an optimal drawing Γ of G that visualizes T ,
R, P , and the mapping between L(T) and P . Γ must sat-
isfy the following requirements: (1) T is drawn either as a
rectangular or an inner-circle cladogram. (2) The leaves of
T are placed on a linear or circular boundary. (3) The map-
ping between L(T) and P is indicated by colour. (4) The
order and position of the leaves should match the spatial
distribution of P in such a way that the mapping between
L(T) and P is visually as clear as possible. Figure 4 shows
a simplified example of an input with two possible outputs.

Contribution and organization. In this paper we present
three algorithms that solve the problem of visualizing geo-
phylogenies. We introduce added flexibility with respect
to previous work by Klawitter et al. (2023); this flexibility
allows us to explore a greater range of possible solutions
and to often find visualizations of higher quality.

Specifically, in Section 3 we show how to compute inner-
circular geophylogenies. Figure 5 illustrates that the added

(a) Input phylogeny (b) Input sites (c) Rectangular geophylogeny (d) Circular geophylogeny

Figure 4. Example input (a) and (b), and possible outputs (c) or (d).

Advances in Cartography and GIScience of the International Cartographic Association, 5, 34, 2025.
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-5-34-2025 | © Author(s) 2025. CC BY 4.0 License

3 of 8

(a) Rectangular cladogram. (b) Inner-circular cladogram.

Figure 5. Synthetic Clustered instance: an inner-circular cladogram has better association between leaves and sites.

flexibility of approaching the map from all sides can greatly
increase the quality of the drawing. In Section 4 we then
show how to compute visualizations also for polygonal
sites. Inspired by algorithms for necklace maps (Speck-
mann and Verbeek, 2010), we introduce adaptive leaf po-
sitions in Section 5. Figure 6 illustrates the improvements
to the drawing given the added flexibility for the tree. In
Section 6 we report on experimental results; generally we
can conclude that our flexible algorithms compute visual-
izations with a better association between leaves and sites
than previous work.

2. Related Work

The most well-known software for generating geophylo-
genies is the phytools R package by Revell (2024). It
provides a convenient way to correctly draw geophyloge-
nies in a variety of styles, but it does not provide proper
optimization of the embedding of the tree: the package ei-
ther chooses some random embeddings or leaves it to the
user to provide one. Klawitter et al. (2023) performed the
first systematic study of geophylogenies from an algorith-
mic perspective. They formalized the problem and mainly
focussed on minimizing leader crossings. Tanglegrams are

another tree embedding problem with applications in bi-
ology; optimizing one-sided tanglegrams (Fernau et al.,
2010) is most closely related to our work.

See Figures 1–3 for several examples of geophylogenies
from the biological literature. In general, both rectangu-
lar cladograms (Poczai et al., 2011, Jauss et al., 2021) and
rectangular phylograms (Mehraban et al., 2020, Pham et
al., 2017) can be found; the latter do not draw the leaves
at the same height. Pan et al. (2022) use a circular clado-
gram; they also use feature areas instead of point sites. An-
other approach found in the literature is to overlay the tree
directly onto the map, placing the leaves at the sites. Al-
though this approach results in unambiguous linking, the
underlying map is occluded and Page (2015) indicates that
the tree itself becomes hard to read.

Most geophylogenies we have found in the literature use
point sites. Arguably, polygonal sites can capture complex
spatial distributions of species better and at the same time
afford greater freedom to link visually. In fact, the litera-
ture on boundary labelling shows that the additional flex-
ibility created by polygonal sites can lead to better maps
(Bekos et al., 2010). Hence we hope that our results for
polygonal sites will promote their use in the future.

(a) Fixed leaf positions are spread out evenly and do not match
the geography.

(b) Adaptive leaf positions reflect the geography of the sites more
clearly.

Figure 6. Geophylogeny of European green lizards; data from Jauss et al. (2021).

Advances in Cartography and GIScience of the International Cartographic Association, 5, 34, 2025.
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-5-34-2025 | © Author(s) 2025. CC BY 4.0 License

4 of 8

(a) Rectangular boundary. (b) Circular boundary.

Figure 7. Fixed uniformly spaced leaf positions.

3. Circular Boundary

The algorithms of Klawitter et al. (2023) label geophylo-
genies by putting the leaves evenly spaced on one side of
a rectangular boundary (Figure 7a). Without significant
modification, their dynamic programming algorithm can
already handle arbitrarily spaced candidate positions for
the leaves, as long as those positions are fixed and totally
ordered (in their case: left-to-right). We now extend the
algorithm to handle circularly ordered candidate positions,
which will allow us to draw inner-circular geophylogenies
(Figure 7b).

3.1 Quality Measures

The overall goal when placing the leaves of the tree is to
clearly communicate the correspondence to the sites on the
map. Generally speaking, this means that we would want a
site pi and its corresponding leaf li to be close together. For
linear boundaries, Klawitter et al. defined Distance, which
sums the Euclidean distance of each pair; XOffset, which
sums the horizontal distance of each pair, and IndexOffset,
which sums how many steps away each pair is the left-to-
right permutation. These quality measures are referred to
as leaf-additive since they simply sum the individual qual-
ity of each leaf, where the quality of the leaf is determined
only by its own position and the position of its site, and
is independent of the other leaves. The algorithm uses a
number of candidate positions that matches the number of
leaves of T , so none are left empty and the quality of a
drawing is determined solely by the embedding of T .

For circular drawings, the quality measure Distance can be
adopted without change (Figure 8a). Rather than the hor-
izontal distance of XOffset, we will use circular arc length
and call it ROffset: θ(pi, li) · d(c, li), where c is the center
and θ(pi, li) denotes the radial angle between pi and li with
respect to c. This has the effect of weighing the contribu-
tion of the sites by their distance from the center, which is
appropriate since a particular difference in angle is more
pronounced near the boundary: see Figure 8b.

Adopting IndexOffset is conceptually reasonable, by hav-
ing it consider how much the leaves permute the cyclic or-
der of the sites with respect to c. However, this is not a
leaf-additive quality measure: just the permutation of the
leafs no longer completely determines the drawing, as it
did for a linear boundary, since we can now shift all labels
along the circle. Other leaves can influence which shift is

(a) Distance (b) ROffset

Figure 8. The orange segments indicate the distances being
summed for the quality measures.

best, so we cannot tell in advance what the quality is of
putting a particular leaf at a particular position. Hence we
do not consider IndexOffset for circular drawings.

3.2 Algorithm

Here we briefly sketch Klawitter et al.’s algorithm for lin-
ear boundaries and observe that the circular solution can
be found using the same techniques.

Note that the leaves of any subtree are placed at consecu-
tive candidate positions, otherwise drawing the tree would
require crossings. We can thus say that a subtree is placed
at a particular position: put its leftmost leaf there. Since we
use a leaf-additive objective function, a subtree at a partic-
ular position has a well-defined best embedding regardless
of the rest of the tree. Let F(v, i) be the minimum cost of
embedding T (v) with its leftmost leaf placed at position
i. Klawitter et al. give a recurrence for F and get an opti-
mal embedding for T by evaluating F(root(T),1): the best
way to embed the entire tree starting at the leftmost posi-
tion. Dynamic programming yields a runtime of O(n2).

Their recurrence only considers placing subtrees that fit on
the boundary. For a circular boundary, blocks of consec-
utive leaves can “wrap around” index space: see e.g. Fig-

l1 l2 l3 l4 l5 l6

(a) Embedding with l1 as left-most leaf.

1 2 3 4 5 6
l1

(b) l1 is placed at position 1.

1

2

3

4

5

0

l1

(c) l1 is placed at position 5.

Figure 9. The embedding in (a) uniquely gives drawing (b)
on a linear boundary. On a circular boundary, there are n
cyclic shifts, such as the one in (c).

Advances in Cartography and GIScience of the International Cartographic Association, 5, 34, 2025.
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-5-34-2025 | © Author(s) 2025. CC BY 4.0 License

5 of 8

ure 9, where l1 and l2 are consecutive at positions 5 and 0.
(For notational convenience, we start counting circular po-
sitions at 0 instead of 1.)

Theorem 1. Consider a geophylogeny with n leaves and
let f be a leaf additive objective function. A drawing with
circular boundary of that minimizes (or maximizes) f can
be computed in O(n2) time.

Proof. Adapting the original recurrence, where v is a ver-
tex with children v1 and v2, n is the number of leaves in
T , and n(v) is the number of leaves in T (v), we know the
following: either T (v1) comes first in clockwise order, or
T (v2) comes first, with the other following immediately.

F(v, i) = min{ F(v1, i)+F(v2,(i+n(v1)) mod n),
F(v2, i)+F(v1,(i+n(v2)) mod n) }

(1)

Computing F for all vertices and all positions can be done
in O(n2) time by the same arguments as in the original
paper. For a linear boundary, the optimum was given by
F(root(T),1), since the tree must start at the leftmost posi-
tion; we must consider the minimum over all cyclic shifts
by taking mini∈[0,n−1] F(root(T), i), but this does not influ-
ence the asymptotic runtime.

4. Polygonal Sites

Our second generalization to the drawing style is to con-
sider instances where the geographic information associ-
ated with a leaf is a polygon instead of a single point. One
way to handle this is to reduce the polygon to a repre-
sentative point, such as the centroid or the geodesic cen-
ter. However, this may lead to worse results, as the actual
shape of a polygon can potentially provide useful freedom
for good leaf placement.

As quality measure, we stick to Distance and interpret it
as follows: Euclidean distance from the leaf to the closest
point of the polygon; see Figure 10. We provide an effi-
cient preprocessing procedure for the regions that allows
Distance to be queried efficiently from the boundary and
enables the algorithm from Section 3 to handle polygonal
regions at no asymptotic cost (except when the regions are
exceedingly detailed).

Figure 10. Distance of three uniformly spaced leaves to the
corresponding polygonal site.

Cv1

Ce1 Cv2

Ce2

Cv3

Ce3
Cv4

Ce4

v1
e1

v2

e2

v3

e3

v4

e4
q1

q2

q3

Figure 11. Circular boundary divided into intervals by the
Voronoi diagram of a polygon. Point q1 lies in the interval
Cv3 , so the distance from q1 to the polygon is realised be-
tween q1 and v3; between q2 and e1, and q3 and v4.

Theorem 2. Consider a polygonal site P with k vertices,
and a linear or a circular boundary. After O(k logk) pre-
processing time, we can query: the distance of an arbitrary
position on the boundary in O(logk) time; the distances of
an ordered list Q of arbitrary positions on the boundary
in O(k + |Q|) time. The derivative of the distance at the
position(s) can be reported in the same time.

Proof. First, compute the Voronoi diagram of the vertices
and edges of P. This can be done in O(k logk) time using
the algorithm of Yap (1987) and subdivides the plane into
O(k) convex regions defined by being closest to a particu-
lar element of P (a vertex or an edge); see Figure 11. Then
in O(k) time we find the intersections between the edges
of the Voronoi diagram and the boundary, in sorted order
along the boundary.2 This cuts the boundary into O(k) in-
tervals, which we store in a sorted list, along with which
element of P that interval is closest to.

To answer a distance query for a point q on the boundary,
find the interval that contains it in O(logk) time using bi-
nary search, then compute the distance to the appropriate
element of P in constant time. The derivative along the
boundary can also be computed analytically based on the
shape of the boundary and the closest element.

To answer a distance query for a sorted list of such points,
find the interval that contains the first point as before. Then
traverse both the query list and the interval list simultane-
ously in the manner of a merge. This traverses the entire
query list and, at most, the entire interval list, for a time
bound of O(k+ |Q|).

Corollary 3. Geophylogenies with polygonal sites can be
optimized in O(n2 + K logK) time, where K is the total
number of vertices in the polygons.

2Let q be a point on the boundary. Use a point location data structure
on the Voronoi diagram to find the cell that contains q. Test all edges
of the cell against the boundary to find any intersection points; trace the
boundary through such edges to the adjacent cell and continue. This pro-
cess finds the intersections in sorted order and runs in O(k) time since
every edge of the Voronoi diagram is considered at most a constant num-
ber of times during this traversal.

Advances in Cartography and GIScience of the International Cartographic Association, 5, 34, 2025.
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-5-34-2025 | © Author(s) 2025. CC BY 4.0 License

6 of 8

Proof. For each polygon Pi ∈ P , query the distance to all
candidate leaf positions and construct a distance matrix:
preprocess polygon Pi in O(ki logki) time, where ki is its
number of vertices, then use a list query in O(n+ ki) time.
Doing this for all n polygons takes a total of O(K logK) for
the preprocessing and O(n2 +K) for the queries. (The ki
terms add up to K.) Then use the appropriate dynamic pro-
gram depending on the boundary type; either takes O(n2)
time using the distance matrix.

5. Adaptive Leaf Positions

For our final generalization of the drawing style, we return
to point sites but forgo preset candidate positions: rather
than fixed uniform spacing, the leaves can be placed freely
along the boundary. This flexibility can be used to better
reflect the geography of the sites.

We give each leaf an interval on the boundary within which
it can be placed. Conceptually, these intervals start as sin-
gleton points at the best possible position (that is, closest to
the site) and grow until the tree can be drawn without cross-
ings. We design the process by which the intervals grow so
that sites close to the boundary have smaller intervals: it is
visually most important that those leaves are near the site.
For sites that are far from the boundary, we tolerate more
discrepancy since the reader must make a significant visual
jump in any case. See Figure 12.

5.1 Determining Placement Intervals

We formalize the case of a linear boundary; a circular bound-
ary can be handled analogously. Let Wi be a wedge straight
up from the site pi; all wedges have the same angle α

(value to be determined later). Let Ii = [ℓi,ri] be the in-
tersection of Wi with the boundary: this is where leaf li
may be placed. Note that Ii is a function of α .

We say that Ii < I j if Ii is strictly to the left of I j (that is:
ri < ℓ j). Then the leaf li must certainly be placed to the left
of l j when using this value of α . Let v be an internal vertex
with children v1 and v2; let la, lb ∈ L(v1) and lc, ld ∈ L(v2).
If such leaves exist where Ia < Ic and Id < Ib, we say v has
a conflict for this value of α .

To see why conflicts are bad, first note that the leaves under
v1 and the leaves under v2 cannot be interleaved from left to
right, or the tree would have crossings. However, a conflict

pi

pj

Ii Ij

(a) Smaller value of α .

pi

pj

Ii
Ij

(b) Larger value of α .

Figure 12. Site p j is farther from the boundary than pi, so
its interval grows faster when increasing the wedge angle.

pi

pj

`i ri, `j rjci cj

Figure 13. The angle α∗(i, j), which realizes ri = ℓ j.

implies that the leaves must interleave, so there is no way
to draw the tree that respects these placement intervals: α

must be larger, so that at least Ia ̸< Ic or Id ̸< Ib.

Indeed, increasing α makes all intervals larger, which even-
tually resolves any conflict; call a value of α feasible if the
tree has no conflicts. Still, in order to keep the leaves as
close as possible to their ideal position, we will find the
smallest feasible α .

Let α∗(i, j) be the minimum angle such that Ii and I j touch;
see Figure 13. This means that if α > α∗(i, j), the pair li,
l j cannot contribute to a conflict.
Theorem 4. Computing the minimum feasible α can be
done in O(n2) time for a linear boundary and O(n3) for a
circular boundary.

Proof. Consider a pair of leaves (la, lb) where pa is left of
pb, and let v be their lowest common ancestor in T . Then
Ia < Ib if and only if α < α∗(a,b), in which case these
leaves could participate in a conflict at v (but not at any
other vertex): it would force the subtree containing a to be
the left subtree of v. Call this a demand on the embedding
of v and note that v has a conflict if and only if it has at
least one demand in each direction.

In O(n2) time, we mark each internal vertex with the de-
mands on it, and which way around they want to embed the
children of v; call these opposing sets Av and Bv. For there
to be no conflict at v, we must pick α such that at least one
of Av and Bv becomes empty. The smallest α that achieves
this is

α
∗(v) = min{ max

(i, j)∈Av
α
∗(li, l j), max

(i, j)∈Bv
α
∗(li, l j)}.

All conflicts are resolved if and only if α ≥ maxv α∗(v),
so that is in fact the minimum feasible α . The runtime of
evaluating these expressions is O(n2) since every pair of
leaves occurs in only one place.

Conflicts on a circular boundary are unwieldy, so for the
algorithm we reduce to the linear-boundary case: cut the
circle between two radially adjacent sites, trying all n op-
tions for where to cut. This adds an O(n) factor to the
runtime.

Picking the minimum feasible α has the disadvantage that
it leads to leaves placed on top of each other, since we
stop at the exact moment the last conflict is resolved. In
practice, it is advisable to pick α∗ so that the intervals share
at least a given amount of overlap; see Figure 15.

Advances in Cartography and GIScience of the International Cartographic Association, 5, 34, 2025.
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-5-34-2025 | © Author(s) 2025. CC BY 4.0 License

7 of 8

l1 l2 l3 l4

v

p4
p2

p3
p1

v1 v2

v
v1 v2

(a) Input tree and sites.

l4

p4
p2

p3
p1

l1l3 l2

v
v2 v1

(b) Minimum feasible α .

Figure 14. Internal node v has a conflict if α < α∗(2,3).

l4

p4
p2

p3

p1

l1l3 l2

v

v2 v1

Figure 15. Drawing where α∗ is modified to produce some
minimum amount of overlap between intervals; notice l2
and l3, and compare to Figure 14b.

5.2 Placing the Leaves

Once a feasible α has been determined and a set of inter-
vals without conflicts has thus been found, the sets Av and
Bv determine if v must be embedded one way or another (or
is free to do either). The leaves can then be placed greed-
ily in the order given by T , for example at their leftmost
available position.

This places the leaves unnecessarily far to the left, so we
then use the force-directed method of Speckmann and Ver-
beek (2010), attracting leaves to the middle of their inter-
val while repelling each other, and making sure to keep the
leaves in the same order and within their interval.

We note that the force-directed method can take any start-
ing point of the leaves, including those that were computed
with uniform leaf positions. Thus we can add adaptive
leaves to algorithms that do not support it natively.

6. Experimental Evaluation

We have implemented the algorithms from Sections 3 and 5
and have run them on real-world and the synthetic instances.
We have not implemented the algorithm with polygonal
sites, since – although several biologists argued for this in
personal communication – we found very few data sets that
include polygonal sites and it is unclear what realistic in-
stances would look like. Even though our code is not en-
gineered for speed, all instances of reasonable size (up to a
few hundred leaves) are solved in a fraction of a second.

We use the same process for generating random instances
as Klawitter et al. (2023); see their paper for details. We fo-
cus on synthetic instances, rather than real instances, since

50 100
0

2

4

6

8

n

D
is

ta
nc

e

Clustered

50 100
0

2

4

6

8

n

Coastline

Figure 16. Average Distance of optimal solutions.

50 100
0

2

4

6

8

n

D
is

ta
nc

e

Clustered

50 100
0

2

4

6

8

n

Coastline

Figure 17. Average Distance of optimal solutions after
force-directed postprocessing.

this allows us to make structural observations about what
happens with an increasing the number of leaves. All plots
use the following symbology, and averages are taken over
100 instances for each value of n.

Uniform rectangular Adaptive rectangular
Uniform circular Adaptive circular

Figure 16 compares our various drawing styles by the av-
erage distance between leaves and the corresponding site.
Note that a circular boundary significantly outperforms a
linear boundary on Clustered instances (cf. Figure 5) and
that adaptive leaves outperform uniform leaves for small n.
The latter advantage disappears with increasing n, as the
boundary becomes cluttered and the minimum spacing be-
tween the leaves pushes adaptive leaves to position them-

50 100
0

5

10

15

n

D
is

ta
nc

e

Clustered

50 100
0

5

10

15

n

Coastline

Figure 18. Maximum Distance of optimal solutions after
force-directed postprocessing.

Advances in Cartography and GIScience of the International Cartographic Association, 5, 34, 2025.
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-5-34-2025 | © Author(s) 2025. CC BY 4.0 License

8 of 8

selves uniformly. In contrast, we see that a linear bound-
ary is preferred for Coastline instances, since this boundary
shape better matches the geography; adaptive leaves on a
circular boundary can cope when n is small, but end up
having to take the entire circle for large n.

Figure 17 suggests that using force-directed postprocess-
ing on a drawing computed with uniform leaf placement
(Section 3) is just as good as directly optimizing adaptive
leaves with the algorithm from Section 5; if anything, it
works slightly better, possibly due to having found a more
appropriate embedding of the tree. However, Figure 18
shows the maximum distance between a leaf and its site
(instead of the average): here the advantage of specifically
optimized adaptive leaves reappears, since the global op-
timization of the wedge angles ensures that every leaf re-
ceives a somewhat reasonable position.

7. Conclusion

In this paper we introduced three algorithms to more flex-
ibly draw optimized geophylogenies: circular boundaries,
polygonal sites, and adaptive leaf positions. Each in their
own way increases the ability to reflect the geography of
the sites and thus more clearly communicate the relation
between the phylogenetic tree and the geography.

We experimentally studied the quality of the drawings pro-
duced by these algorithms and found that different styles
and objective functions perform well on different kinds of
geography, which illustrates the importance of flexible al-
gorithms. We hope in particular that support for region
sites may find use in practice.

References

Angst, P., Ebert, D. and Fields, P. D., 2023. Population
genetic analysis of the microsporidium Ordospora colli-
gata reveals the role of natural selection and phylogeog-
raphy on its extremely compact and reduced genome.
G3 Genes|Genomes|Genetics 13(3), pp. 1–11.

Baum, D. et al., 2008. Reading a phylogenetic tree: the
meaning of monophyletic groups. Nature Education
1(1), pp. 190.

Bekos, M. A., Kaufmann, M., Potika, K. and Symvonis,
A., 2010. Area-feature boundary labeling. The Com-
puter Journal 53(6), pp. 827–841.

Bentley, R. A., Moritz, W. R., Ruck, D. J. and O’Brien,
M. J., 2021. Evolution of initiation rites during
the Austronesian dispersal. Science Progress 104(3),
pp. 00368504211031364.

Fernau, H., Kaufmann, M. and Poths, M., 2010. Compar-
ing trees via crossing minimization. Journal of Com-
puter and System Sciences 76(7), pp. 593–608.

Jauss, R.-T., Solf, N., Kolora, S. R. R., Schaffer, S.,
Wolf, R., Henle, K., Fritz, U. and Schlegel, M., 2021.
Mitogenome evolution in the Lacerta viridis complex
(Lacertidae, Squamata) reveals phylogeny of diverging
clades. Systematics and Biodiversity 19(7), pp. 682–
692.

Klawitter, J., Klesen, F., Scholl, J. Y., van Dijk, T. C.
and Zaft, A., 2023. Visualizing Geophylogenies - Inter-
nal and External Labeling with Phylogenetic Tree Con-
straints. In: 12th International Conference on Geo-
graphic Information Science (GIScience 2023), LIPIcs,
Vol. 277, pp. 5:1–5:16.

Mehraban, H., Esmaeili, H. R., Zarei, F., Ebrahimi, M.
and Gholamhosseini, A., 2020. Genetic diversification,
population structure, and geophylogeny of the Scarface
rockskipper Istiblennius pox (teleostei: Blenniidae) in
the Persian Gulf and Oman Sea. Marine Biodiversity
50, pp. 1–12.

Page, R., 2015. Visualising geophylogenies in web
maps using geojson. Public Library of Science,
https://eprints.gla.ac.uk/109946/, pp. 1–5.

Pan, D., Shi, B., Du, S., Gu, T., Wang, R., Xing, Y., Zhang,
Z., Chen, J., Cumberlidge, N. and Sun, H., 2022. Mi-
togenome phylogeny reveals indochina peninsula origin
and spatiotemporal diversification of freshwater crabs
(potamidae: Potamiscinae) in China. Cladistics 38(1),
pp. 1–12.

Pham, K. K., Hipp, A. L., Manos, P. S. and Cronn, R. C.,
2017. A time and a place for everything: phylogenetic
history and geography as joint predictors of oak plas-
tome phylogeny. Genome 60(9), pp. 720–732.

Poczai, P., Hyvönen, J. and Symon, D. E., 2011.
Phylogeny of kangaroo apples (solanum subg. ar-
chaesolanum, solanaceae). Molecular biology reports
38, pp. 5243–5259.

Revell, L. J., 2024. phytools 2.0: an updated r ecosys-
tem for phylogenetic comparative methods (and other
things). PeerJ 12, pp. e16505.

Soininen, J., McDonald, R. and Hillebrand, H., 2007. The
distance decay of similarity in ecological communities.
Ecography 30(1), pp. 3–12.

Speckmann, B. and Verbeek, K., 2010. Necklace maps.
IEEE Transactions on Visualization and Computer
Graphics 16(6), pp. 881–889.

Tobler, W. R., 1970. A computer movie simulating urban
growth in the detroit region. Economic Geography 46,
pp. 234–240.

Yap, C. K., 1987. An O(n logn) algorithm for the Voronoi
diagram of a set of simple curve segments. Discrete &
Computational Geometry 2(4), pp. 365–393.

Advances in Cartography and GIScience of the International Cartographic Association, 5, 34, 2025.
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada. This contribution underwent
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-5-34-2025 | © Author(s) 2025. CC BY 4.0 License

