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Abstract: The rapid growth of electric vehicles (EVs) necessitates the strategic placement of charging stations to 

support widespread adoption and ensure sustainable transportation. This study employs Geographic Information 

Systems (GIS) and spatial optimization techniques to address the site selection problem for electric vehicle charging 

stations (EVCS) in the state of Minnesota, United States. Specifically, it investigates how many and where new EVCSs 

should be added to complement the existing network and meet demand. Unlike previous studies focusing on urban 

areas, this research conducts a statewide analysis, accounting for spatial variations in EVCS distribution by applying 

different coverage radii for metropolitan and non-metropolitan areas. The results indicate that the selected sites enhance 

coverage, particularly in metropolitan regions. This research provides transportation practitioners with an adaptable 

framework validated through a case study in Minnesota, offering valuable insights into GIS-based site selection 

methods for EVCS.  
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1. Introduction

The growing adoption of electric vehicles (EVs) is 

critical for addressing climate change and achieving 

sustainability goals, particularly in reducing 

transportation-related greenhouse gas emissions. In 

Minnesota, transportation contributes about 25% of the 

state’s emissions, with light-duty vehicles being the 

largest source. To mitigate these emissions, the state has 

set ambitious EV adoption targets, aiming for 5% of 

light-duty vehicles to be electric by 2025 and 65% by 

2040. A crucial aspect of this transition is ensuring that 

the EV charging station (EVCS) network can meet the 

increasing demand across the state, thus supporting the 

widespread adoption of EVs. While recent studies have 

focused mainly on EV charging infrastructure in urban 

areas, rural regions, where EV adoption may be slower 

but still significant, have received less attention. 

Minnesota’s National Electric Vehicle Infrastructure 

(NEVI) plan aims to deploy fast charging stations along 

Alternative Fuel Corridors (AFCs), yet a systematic 

approach for selecting the best sites is still lacking. This 

highlights the need for more comprehensive studies to 

determine the optimal locations for EVCS deployment 

statewide, addressing both metropolitan and non-

metropolitan needs. 

This study aims to address these research gaps in EVCS 

site selection by providing a case study of Minnesota. 

Utilizing GIS tools and spatial optimization techniques, 

the study identifies optimal locations for new EVCS, 

considering both urban and rural needs. The research 

evaluates three common optimization models for site 

selection, building on previous studies. The goal is to 

minimize travel distance and optimize coverage across 

varying demand densities. Additionally, the study 

introduces flexibility in the coverage radius of charging 

stations to accommodate the distinct characteristics of 

urban and rural areas, offering a more adaptable approach 

to EVCS deployment. The effectiveness of the site 

selection is evaluated through the coverage rate of 

registered EVs and the population. In conclusion, this 

study presents a state-wide analysis of EVCS site 

selection in Minnesota, providing valuable insights for 

stakeholders to optimize EV infrastructure and support 

the transition to a low-carbon transportation system. 

1.1 Criteria for EVCS Site Selection 

Previous studies and guidelines have summarized key 

criteria for optimal EVCS site selection, highlighting the 

need for a multi-dimensional analysis of technical, 

economic, environmental, and social factors (Banegas & 

Mamkhezri, 2023; Harshil & Nagababu, 2024). This 

paper consolidates these factors into three main 

categories: demand, cost, and equity. A thorough analysis 

of these elements is crucial to ensure effective site 

selection and alignment with the goals of sustainable and 

equitable transportation. 

Demand is a primary criterion for EVCS site selection, 

influenced by charger type and technology (Great Plains 

Institute, 2019). For example, Direct-Current Fast 

Charging (DCFC or Level 3) enables rapid charging, 

reaching 80% capacity within an hour, but incurs higher 

construction costs, making it ideal for highways and busy 

roads to serve long-distance travelers (Tu et al., 2019). 
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Level 2 and Level 1 Alternating-Current (AC) chargers, 

requiring several hours or days for similar charging levels 

(Dericioglu et al., 2018), are better suited for residential, 

workplace, and recreational areas. Social factors like 

travel patterns, population density, and EV ownership 

also influence demand. In the absence of ownership data, 

proxies such as income and education levels are used to 

forecast needs (He et al., 2016). 

Beyond demand, cost is another critical consideration in 

Cost is another critical factor in EVCS placement. 

Integrating chargers into existing fuel stations or parking 

facilities reduces land acquisition costs (Great Plains 

Institute, 2019; He et al., 2016). Fast chargers, requiring 

industrial-grade power lines and transformers, entail 

higher electrical infrastructure costs, and their grid impact 

must be assessed. For new sites, terrain, geology, and 

construction feasibility are essential considerations. 

Operational costs and government subsidies also 

significantly affect the financial viability of EVCS. 

Subsidies can offset initial expenses, improving 

economic feasibility. 

Social equity and environmental justice are equally vital. 

EVCS planning should address the needs of underserved 

communities, ensuring accessibility for low-income and 

environmentally burdened populations to promote 

inclusivity. Environmental considerations focus on 

reducing ecological impacts by prioritizing renewable 

energy and sustainable practices, like water recycling and 

permeable surfaces. Balancing these elements fosters 

equitable, sustainable EVCS development and broad 

community support for electric mobility. 

1.2 GIS and Spatial Data Integration 

EVCS site selection requires integrating spatial and non-

spatial data (Banegas & Mamkhezri, 2023). Non-spatial 

data can be easily integrated, but geographic data requires 

advanced GIS techniques (Erbaş et al., 2018; Kłos & 

Sierpiński, 2023; Zhang et al., 2019). GIS combines 

datasets like charging station locations, road networks, 

and demographic information to create an analytical 

framework. For example, buffer analysis creates zones 

around existing stations to assess coverage and identify 

underserved areas. Overlay analysis merges spatial 

layers, revealing relationships between high EV 

ownership areas and charging station locations. Network 

analysis evaluates travel costs between sites, such as the 

distance to transportation hubs. 

GIS also enhances decision-making with intuitive map 

visualizations that show the spatial distribution of 

charging stations, traffic, and population density. These 

maps help identify high-demand areas, assess station 

coverage, and evaluate accessibility. Moreover, they 

promote transparency and public engagement by 

illustrating the site selection process clearly.   

1.3 Site Selection Methods 

EVCS site selection involves multiple factors, making 

Multi-Criteria Decision-Making (MCDM) methods 

suitable (Dang et al., 2021). MCDM techniques like the 

Weighted Sum Model (WSM) and Analytic Hierarchy 

Process (AHP) decompose the problem into criteria and 

assign weights, with WSM using simple weighted 

summation and AHP using pairwise comparisons to 

assess criterion importance (Csiszár et al., 2019; Guler & 

Yomralioglu, 2020). 

In addition, optimization models like Integer Linear 

Programming (ILP) and Mixed-Integer Linear 

Programming (MILP) are commonly used (Franco et al., 

2015; Wang et al., 2016). These models mathematically 

formulate constraints and objectives, such as minimizing 

the number of stations while covering all demand points 

(He et al., 2016). ILP and MILP provide precise solutions 

but are computationally intensive and less flexible with 

uncertain data. 

While MCDM methods are more subjective and better 

suited for multi-objective problems, they can be sensitive 

to weight assignments and expert opinions. A combined 

approach—using AHP and WSM for weight assignment 

and MILP for optimization—offers a flexible, 

comprehensive solution for EVCS site selection. Banegas 

and Mamkhezri (2023) provide a detailed overview of 

other methods, including genetic algorithms and agent-

based simulations. 

2. Methods   

2.1 Study Area 

The study area for this research is the state of Minnesota, 

United States. Transportation contributes roughly 25% of 

Minnesota's greenhouse gas emissions, primarily from 

light-duty vehicles with internal combustion engines 

(Claflin et al., 2023). Electrifying these vehicles is key to 

meeting the state’s climate goals (Great Plains Institute & 

Bellwether Consulting, 2021). The Minnesota 

Department of Transportation (MnDOT) aims to achieve 

5% EV registration among light-duty vehicles by 2025 

and 65% by 2040  (MnDOT, 2024b). As of January 2024, 

Minnesota had 53,356 registered EVs, accounting for 1% 

of all light-duty vehicles (MnDOT, 2024b; MnPUC, 

2024). While the state has not yet fully aligned with its 

long-term targets, the number of EV registrations 

continues to increase, as illustrated in Figure 1. 

 

Figure 1. EV Registration Trends by Year in Minnesota (Data 
adapted from MnPUC, 2024).  

To support EV adoption, Minnesota plans a robust 

statewide charging network. Through a $68 million NEVI 

allocation, fast-charging stations will be installed along 
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Alternative Fuel Corridors (AFCs) during FFY22-26 

(FFY22-26), with stations spaced no more than 50 miles 

apart and within one mile of AFC exits (MnDOT, 2024a). 

This plan primarily targets Minnesota's two AFCs, 

Interstate 94 and Interstate 35. MnDOT’s ongoing EV 

Infrastructure Needs Assessment (EVINA), to be 

completed by May 2025, will identify additional priority 

areas and develop optimization models for station 

placement (MnDOT, 2024c). This study aligns with 

EVINA’s goals by focusing on spatial optimization and 

GIS methods. 

2.2 Data 

This study utilizes charging station data from the U.S. 

Department of Energy (USDOE, 2024), including 

longitude and latitude coordinates. As of December 2024, 

there are 894 publicly available EV charging stations 

within Minnesota. These comprise four stations with 

Level 1 chargers, 728 with Level 2 chargers, and 203 

with fast chargers, with some stations hosting multiple 

charger types. 

EV registration data for 2023 is segmented by zip code 

(MnPUC, 2024), with zip code centroids representing 

regional demand (Manson, 2020). This study focuses on 

current demand and its spatial distribution, not future 

demand forecasting, which requires advanced models (He 

et al., 2016). Figure 2 illustrates the spatial distribution of 

EV registrations and charging stations: blue dots indicate 

existing stations, with darker shades representing higher 

station density. The background shows EV registrations 

by zip code, with darker red indicating higher registration 

numbers, while the black boundary marks the seven-

county metropolitan area. As shown in Figure 2, the 

densest concentrations of EV registrations and charging 

stations are located within the seven-county metropolitan 

area. 

To identify potential new EVCS sites, this study utilizes 

the location data on 130 gasoline stations and 1,881 

parking lots from a point-of-interest dataset (SafeGraph, 

2024), aligning with cost-effective strategies from prior 

research (He et al., 2016). It is important to recognize, 

however, that the selection of potential locations can be 

adjusted depending on specific planning needs and 

available data. Population data at the block group level 

(Manson, 2020) and EV registration data are further 

utilized to evaluate coverage of current and proposed 

sites.  

 

Figure 2. Spatial Distribution of Existing Charging Stations and 
EV Registrations. 

2.3 Spatial Optimization 

This study applies and compares three optimization 

methods for EVCS site selection: the Set Covering Model 

(SCM), the Maximal Covering Location Model (MCLM), 

and the P-Median Model (PMM) (He et al., 2016). A 

unified linear model is adopted to mathematically 

formulate these models (Hillsman, 1984).  

Key sets and parameters:  

- 𝐼: The set of demand locations. 

- 𝐽 : The set of locations for charging stations, 

including the existing and potential sites. 

- 𝐽𝑒𝑥𝑖𝑠𝑡 : The set of already constructed charging 

stations. 

- 𝐷𝑖: The maximum acceptable coverage radius or 

distance threshold for demand location 𝑖. 
- 𝑑𝑖𝑗 : The Euclidean distance between demand 

location 𝑖 and charging station 𝑗. 

- 𝑝: The number of new charging stations to be 

established.  

- 𝑤𝑖: The demand weight of the demand location 

𝑖 , represented by population.  

Decision variables:  

- 𝑥𝑗 ∈ {0,1}: Binary variable; 𝑥𝑗 = 1 if a charging 

station has been or will be constructed at the 

location 𝑗 , and 𝑥𝑗 = 0  otherwise. This study 

fixes this decision variable to 1  for all pre-

existing charging stations, which means 𝑥𝑗 = 1 

for ∀𝑗 ∈ 𝐽𝑒𝑥𝑖𝑠𝑡. 
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- 𝑦𝑖𝑗 ∈ {0,1}: Binary variable; 𝑦𝑖𝑗 = 1 if demand 

location 𝑖  is covered by the charging station 𝑗 

(i.e., 𝑑𝑖𝑗 < 𝐷𝑖), and 𝑦𝑖𝑗 = 0  otherwise. 

- 𝑧𝑖𝑗 ∈ {0,1}: Binary variable; 𝑧𝑖𝑗 = 1 if demand 

location 𝑖  is assigned to the charging station 𝑗 

and station 𝑗 is or will be established, and 𝑧𝑖𝑗 =

0  otherwise. Each location 𝑖 can be assigned to 

at most one charging station 𝑗 , and it must be 

the closest one.  

Set-Covering aims to minimize the number of new 

charging stations needed and ensures each demand 

location 𝑖 ∈ 𝐼 is covered by at least one charging station 

(Toregas et al., 1971). This can be mathematically 

formalized as follows:  

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑥𝑗

𝑗∈𝐽

 (1) 

 

𝑆. 𝑇.  ∑ 𝑦𝑖𝑗

𝑗∈𝐽𝑖

≥ 1, ∀𝑖 ∈ 𝐼. (2) 

 

The objective function of Maximum-Covering is to 

maximize the total population covered by charging 

stations, while subject to the constraint on the number of 

new stations that can be built (Church & Velle, 1974). 

This can be mathematically formalized as follows:  

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤𝑖

𝑖∈𝐼

∙ 𝑚𝑎𝑥𝑗𝑦𝑖𝑗  (3) 

 

𝑆. 𝑇.  ∑ 𝑥𝑗

𝑗∈𝐽\𝐽𝑒𝑥𝑖𝑠𝑡

≤ 𝑝. (4) 

 

P-Median seeks to minimize the total distance between 

demand locations and the nearest charging stations, 

weighted by the demand at each point, while subject to 

the constraint on the number of new stations that can be 

built (ReVelle & Swain, 1970). This can be 

mathematically formalized as follows:  

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑤𝑖 ∙ 𝑑𝑖𝑗 ∙ 𝑧𝑖𝑗

𝑗∈𝐽𝑖∈𝐼

 (5) 

 

𝑆. 𝑇. ∑ 𝑥𝑗

𝑗∈𝐽\𝐽𝑒𝑥𝑖𝑠𝑡

≤ 𝑝. (6) 

2.4 Evaluation of coverage ratio 

To quantitatively assess the overall coverage of the 

charging stations 𝐽𝑚 selected using different optimization 

methods (existing stations, SCP, MCLM, and PMP), this 

project calculates the coverage ratio of registered EVs 

and the population. Specifically, the coverage ratio 

represents the percentage of registered EVs 𝑤𝑖  and the 

population 𝑝𝑖  with the distance to the closest charging 

station smaller than or equal to a given distance threshold 

𝐷𝑘 . The set of distance thresholds (in kilometres) is 

defined differently for the metropolitan area ( 𝐷𝑘 ∈
{1,2,3,4,5,6,7,8} ) and non-metro area ( 𝐷𝑘 ∈
{5,10,15,20,25,30,35,40,45}). The demand locations are 

the centroids of zip codes, and a demand location is 

covered if its distance to the closest charging station is 

smaller or equal to the distance threshold. Using the same 

notation as in Section 2.3, the coverage indicators are 

calculated as follows: 

 

𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑖,𝑚,𝑘 = {
1 𝑖𝑓𝑑𝑖𝑗 ≤ 𝐷𝑘 , ∃𝑗 ∈ 𝐽𝑚 

0 𝑜ℎ𝑡𝑒𝑟𝑤𝑖𝑠𝑒                 
; 

 

(7) 

𝑅𝑑𝑒𝑚𝑎𝑛𝑑,𝑚,𝑘 =
∑ 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑖,𝑚,𝑘 ∙ 𝑤𝑖𝑖∈𝐼

∑ 𝑤𝑖𝑖∈𝐼

; (8) 

𝑅𝑝𝑜𝑝,𝑚,𝑘 =
∑ 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑖,𝑚,𝑘 ∙ 𝑝𝑖𝑖∈𝐼

∑ 𝑝𝑖𝑖∈𝐼

. 

 

(9) 

These coverage ratios provide a quantitative evaluation of 

how well the proposed charging station networks serve 

both demand and population, offering insights into the 

effectiveness of different site selection methods.  

3. Results 

3.1 Sites Recommendation 

This study categorizes demand locations into two types: 

within the seven-county metropolitan area and outside it, 

assigning different coverage radii based on location type. 

As shown in Figure 3, the potential station network in the 

metropolitan area is denser, with smaller coverage 

distances depicted in blue on the left. The maximum 

distance to the nearest potential station is set at 7,597 

meters for metropolitan areas and 41,956 meters for non-

metropolitan areas, as shown in the equation below. 

These thresholds ensure complete coverage using SCM 

optimization, as smaller distances could result in gaps in 

coverage. This flexible approach allows thresholds to be 

adjusted based on transportation experts' insights or 

specific contextual needs.  

 

Figure 3. Distribution of distance to the closest existing or 
potential charging station, categorized by demand location type. 

Using the defined distance thresholds, the study applies 

SCM and determines that adding a minimum of 25 new 

charging stations to the existing infrastructure covers all 

demand locations within the specified range. With 𝑝 =
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25 , MCLM and PMM are also solved to identify optimal 

station locations, minimizing their respective objective 

functions.  

Intersection analysis (Table 1) shows that SCM and 

MCLM produce very similar results, where 13 out of 25 

(52%) of their optimal locations overlap. Figure 4 and 

Figure 5 show the spatial distribution of the additional 

charging station selected by SCM and MCLM. Both 

models suggest the newly built charging stations should 

be spread out around the boundary of the metropolitan 

area and the state, particularly in regions where no 

existing stations are nearby, as seen in Figure 2. In 

contrast, PMM results differ significantly from SCM and 

MCLM, with only 1 and 2 overlapping stations, 

respectively. The locations selected by PMM are closer to 

high EV charging demand points, as the new stations are 

more concentrated in the metropolitan area, with only a 

few located in non-metropolitan areas, as shown in Figure 

7. Thus, PMM prioritizes placing stations in locations 

that would be more accessible for the majority of 

potential EV users. These results align with prior research 

in Beijing (He et al., 2016). 

 

  SCM MCLM PMM total 

SCM 11 13 1 25 

MCLM 13 10 2 25 

PMM 1 2 22 25 

Table 1. Intersection analysis of the optimal charging station 
locations using SCM, MCLM, and PMM methods.  

 

Figure 4. Locations of charging stations (blue dots) determined 
by SCM. 

 

Figure 5. Locations of charging stations (blue dots) determined 
by MCLM.  

 

Figure 6. Locations of charging stations (blue dots) determined 
by PMM. 

3.2 Evaluation of Coverage Ratio 

Figure 7 shows the coverage ratio across different 

distance thresholds for existing charging stations and 

additional sites selected using the three optimization 

methods. The top and bottom rows of subplots represent 

the coverage ratios for registered EVs and population, 

respectively, while the left and right columns represent 

coverage in metropolitan and non-metropolitan areas. It is 
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clear that as the distance threshold increases, the coverage 

ratio gradually increases and approaches 100%. 

Furthermore, after adding more charging stations using 

the three optimization methods, the coverage exceeds that 

of the scenario, considering only the existing charging 

stations. This improvement is more noticeable in 

metropolitan areas (left subplots) and when using EV 

registration data to measure coverage (upper subplots). 

This is likely because, in our optimization, the objective 

function relies on the location and demand derived from 

the EV registration data, without integrating population 

data into the optimization process. In non-metropolitan 

areas, the four curves are very close to each other or even 

overlap, likely due to the lower number of EV 

registrations and population in these areas, as well as the 

larger range of distance thresholds. Additionally, as 

shown in the top-left subplot, the PMM method results in 

greater coverage improvement when the distance 

threshold is set to a relatively small value. This is because 

the PMM optimization considers both demand and 

distance, unlike the other two methods. 

4. Discussion  

This study presents a flexible framework for optimizing 

the allocation of charging station locations using GIS and 

three spatial optimization models: the Set Covering 

Model (SCM), Maximal Covering Location Model 

(MCLM), and P-Median Model (PMM). Unlike prior 

studies focused on urban areas, this research analyses 

both metropolitan and non-metropolitan areas across 

Minnesota, highlighting trade-offs in coverage, demand, 

distance, and budget. SCM and MCLM produced 

balanced statewide station distributions, while PMM 

concentrated stations in metropolitan areas. Adding the 

optimized stations significantly improved coverage, 

especially in urban regions with high EV registrations. 

This GIS-based framework is replicable and supports 

sustainable transportation planning by integrating diverse 

data sources and addressing regional variations. 

Despite these advancements, the study has limitations. 

First, while EV registration data served as a proxy for 

demand, future growth in EV adoption was not 

considered. Incorporating demand forecasting could 

improve long-term planning. Additionally, this study did 

not differentiate between charger types, such as Level 2 

and DC fast chargers. Future research could optimize site 

selection based on specific charging needs. 

Second, the optimization models primarily addressed 

coverage, demand, and distance but omitted other 

important factors. Future work could incorporate local 

climate impacts, such as how Minnesota’s harsh winters 

affect EV infrastructure. Using road network distances 

instead of Euclidean distances could also improve 

Figure 7. Evaluation of coverage ratio of registered EVs and population by site selection methods and demand location types. 

Advances in Cartography and GIScience of the International Cartographic Association, 5, 36, 2025. 
32nd International Cartographic Conference (ICC 2025), 17–22 August 2025, Vancouver, Canada. This contribution underwent 
double-blind peer review based on the full paper. https://doi.org/10.5194/ica-adv-5-36-2025 | © Author(s) 2025. CC BY 4.0 License



7 of 8 

accuracy, especially in areas with limited road 

connectivity. 

Lastly, the evaluation metrics focused on EV and 

population coverage but did not consider equity or 

accessibility for disadvantaged communities. Future 

studies could include these factors to ensure fairness in 

infrastructure deployment. Balancing efficiency and 

equity remains a critical challenge, especially in resource-

limited contexts. 

To enhance practical applications, future research could 

develop interactive decision-support tools for 

stakeholders, allowing for dynamic visualization of site 

selection factors and scenario-based adjustments. 

Collaborating with transportation agencies could also 

align optimization models with regional planning 

priorities, ensuring realistic and actionable outcomes. 
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