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Abstract: The rapid growth of electric vehicles (EVSs) necessitates the strategic placement of charging stations to
support widespread adoption and ensure sustainable transportation. This study employs Geographic Information
Systems (GIS) and spatial optimization techniques to address the site selection problem for electric vehicle charging
stations (EVCS) in the state of Minnesota, United States. Specifically, it investigates how many and where new EVCSs
should be added to complement the existing network and meet demand. Unlike previous studies focusing on urban
areas, this research conducts a statewide analysis, accounting for spatial variations in EVCS distribution by applying
different coverage radii for metropolitan and non-metropolitan areas. The results indicate that the selected sites enhance
coverage, particularly in metropolitan regions. This research provides transportation practitioners with an adaptable
framework validated through a case study in Minnesota, offering valuable insights into GIS-based site selection

methods for EVCS.
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1. Introduction

The growing adoption of electric vehicles (EVS) is
critical for addressing climate change and achieving
sustainability  goals,  particularly  in  reducing
transportation-related greenhouse gas emissions. In
Minnesota, transportation contributes about 25% of the
state’s emissions, with light-duty vehicles being the
largest source. To mitigate these emissions, the state has
set ambitious EV adoption targets, aiming for 5% of
light-duty vehicles to be electric by 2025 and 65% by
2040. A crucial aspect of this transition is ensuring that
the EV charging station (EVCS) network can meet the
increasing demand across the state, thus supporting the
widespread adoption of EVs. While recent studies have
focused mainly on EV charging infrastructure in urban
areas, rural regions, where EV adoption may be slower
but still significant, have received less attention.
Minnesota’s National Electric Vehicle Infrastructure
(NEVI) plan aims to deploy fast charging stations along
Alternative Fuel Corridors (AFCs), yet a systematic
approach for selecting the best sites is still lacking. This
highlights the need for more comprehensive studies to
determine the optimal locations for EVCS deployment
statewide, addressing both metropolitan and non-
metropolitan needs.

This study aims to address these research gaps in EVCS
site selection by providing a case study of Minnesota.
Utilizing GIS tools and spatial optimization techniques,
the study identifies optimal locations for new EVCS,
considering both urban and rural needs. The research
evaluates three common optimization models for site

selection, building on previous studies. The goal is to
minimize travel distance and optimize coverage across
varying demand densities. Additionally, the study
introduces flexibility in the coverage radius of charging
stations to accommodate the distinct characteristics of
urban and rural areas, offering a more adaptable approach
to EVCS deployment. The effectiveness of the site
selection is evaluated through the coverage rate of
registered EVs and the population. In conclusion, this
study presents a state-wide analysis of EVCS site
selection in Minnesota, providing valuable insights for
stakeholders to optimize EV infrastructure and support
the transition to a low-carbon transportation system.

1.1 Criteria for EVCS Site Selection

Previous studies and guidelines have summarized key
criteria for optimal EVCS site selection, highlighting the
need for a multi-dimensional analysis of technical,
economic, environmental, and social factors (Banegas &
Mamkhezri, 2023; Harshil & Nagababu, 2024). This
paper consolidates these factors into three main
categories: demand, cost, and equity. A thorough analysis
of these elements is crucial to ensure effective site
selection and alignment with the goals of sustainable and
equitable transportation.

Demand is a primary criterion for EVCS site selection,
influenced by charger type and technology (Great Plains
Institute, 2019). For example, Direct-Current Fast
Charging (DCFC or Level 3) enables rapid charging,
reaching 80% capacity within an hour, but incurs higher
construction costs, making it ideal for highways and busy
roads to serve long-distance travelers (Tu et al., 2019).
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Level 2 and Level 1 Alternating-Current (AC) chargers,
requiring several hours or days for similar charging levels
(Dericioglu et al., 2018), are better suited for residential,
workplace, and recreational areas. Social factors like
travel patterns, population density, and EV ownership
also influence demand. In the absence of ownership data,
proxies such as income and education levels are used to
forecast needs (He et al., 2016).

Beyond demand, cost is another critical consideration in
Cost is another critical factor in EVCS placement.
Integrating chargers into existing fuel stations or parking
facilities reduces land acquisition costs (Great Plains
Institute, 2019; He et al., 2016). Fast chargers, requiring
industrial-grade power lines and transformers, entail
higher electrical infrastructure costs, and their grid impact
must be assessed. For new sites, terrain, geology, and
construction feasibility are essential considerations.
Operational costs and government subsidies also
significantly affect the financial viability of EVCS.
Subsidies can offset initial expenses, improving
economic feasibility.

Social equity and environmental justice are equally vital.
EVCS planning should address the needs of underserved
communities, ensuring accessibility for low-income and
environmentally burdened populations to promote
inclusivity. Environmental considerations focus on
reducing ecological impacts by prioritizing renewable
energy and sustainable practices, like water recycling and
permeable surfaces. Balancing these elements fosters
equitable, sustainable EVCS development and broad
community support for electric mobility.

1.2 GIS and Spatial Data Integration

EVCS site selection requires integrating spatial and non-
spatial data (Banegas & Mamkhezri, 2023). Non-spatial
data can be easily integrated, but geographic data requires
advanced GIS techniques (Erbas et al., 2018; Klos &
Sierpinski, 2023; Zhang et al., 2019). GIS combines
datasets like charging station locations, road networks,
and demographic information to create an analytical
framework. For example, buffer analysis creates zones
around existing stations to assess coverage and identify
underserved areas. Overlay analysis merges spatial
layers, revealing relationships between high EV
ownership areas and charging station locations. Network
analysis evaluates travel costs between sites, such as the
distance to transportation hubs.

GIS also enhances decision-making with intuitive map
visualizations that show the spatial distribution of
charging stations, traffic, and population density. These
maps help identify high-demand areas, assess station
coverage, and evaluate accessibility. Moreover, they
promote transparency and public engagement by
illustrating the site selection process clearly.

1.3 Site Selection Methods

EVCS site selection involves multiple factors, making
Multi-Criteria  Decision-Making (MCDM) methods
suitable (Dang et al., 2021). MCDM techniques like the
Weighted Sum Model (WSM) and Analytic Hierarchy
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Process (AHP) decompose the problem into criteria and
assign weights, with WSM using simple weighted
summation and AHP using pairwise comparisons to
assess criterion importance (Csiszar et al., 2019; Guler &
Yomralioglu, 2020).

In addition, optimization models like Integer Linear
Programming (ILP) and Mixed-Integer  Linear
Programming (MILP) are commonly used (Franco et al.,
2015; Wang et al., 2016). These models mathematically
formulate constraints and objectives, such as minimizing
the number of stations while covering all demand points
(He et al., 2016). ILP and MILP provide precise solutions
but are computationally intensive and less flexible with
uncertain data.

While MCDM methods are more subjective and better
suited for multi-objective problems, they can be sensitive
to weight assignments and expert opinions. A combined
approach—using AHP and WSM for weight assignment
and MILP for optimization—offers a flexible,
comprehensive solution for EVCS site selection. Banegas
and Mamkhezri (2023) provide a detailed overview of
other methods, including genetic algorithms and agent-
based simulations.

2. Methods

2.1 Study Area

The study area for this research is the state of Minnesota,
United States. Transportation contributes roughly 25% of
Minnesota's greenhouse gas emissions, primarily from
light-duty vehicles with internal combustion engines
(Claflin et al., 2023). Electrifying these vehicles is key to
meeting the state’s climate goals (Great Plains Institute &
Bellwether  Consulting, 2021). The Minnesota
Department of Transportation (MnDOT) aims to achieve
5% EV registration among light-duty vehicles by 2025
and 65% by 2040 (MnDOT, 2024b). As of January 2024,
Minnesota had 53,356 registered EVs, accounting for 1%
of all light-duty wvehicles (MnDOT, 2024b; MnPUC,
2024). While the state has not yet fully aligned with its
long-term targets, the number of EV registrations
continues to increase, as illustrated in Figure 1.
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Figure 1. EV Registration Trends by Year in Minnesota (Data
adapted from MnPUC, 2024).

To support EV adoption, Minnesota plans a robust
statewide charging network. Through a $68 million NEVI
allocation, fast-charging stations will be installed along
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Alternative Fuel Corridors (AFCs) during FFY22-26
(FFY22-26), with stations spaced no more than 50 miles
apart and within one mile of AFC exits (MnDOT, 2024a).
This plan primarily targets Minnesota's two AFCs,
Interstate 94 and Interstate 35. MnDOT’s ongoing EV
Infrastructure Needs Assessment (EVINA), to be
completed by May 2025, will identify additional priority
areas and develop optimization models for station
placement (MnDOT, 2024c). This study aligns with
EVINA’s goals by focusing on spatial optimization and
GIS methods.

2.2 Data

This study utilizes charging station data from the U.S.
Department of Energy (USDOE, 2024), including
longitude and latitude coordinates. As of December 2024,
there are 894 publicly available EV charging stations
within Minnesota. These comprise four stations with
Level 1 chargers, 728 with Level 2 chargers, and 203
with fast chargers, with some stations hosting multiple
charger types.

EV registration data for 2023 is segmented by zip code
(MnPUC, 2024), with zip code centroids representing
regional demand (Manson, 2020). This study focuses on
current demand and its spatial distribution, not future
demand forecasting, which requires advanced models (He
et al., 2016). Figure 2 illustrates the spatial distribution of
EV registrations and charging stations: blue dots indicate
existing stations, with darker shades representing higher
station density. The background shows EV registrations
by zip code, with darker red indicating higher registration
numbers, while the black boundary marks the seven-
county metropolitan area. As shown in Figure 2, the
densest concentrations of EV registrations and charging
stations are located within the seven-county metropolitan
area.

To identify potential new EVCS sites, this study utilizes
the location data on 130 gasoline stations and 1,881
parking lots from a point-of-interest dataset (SafeGraph,
2024), aligning with cost-effective strategies from prior
research (He et al., 2016). It is important to recognize,
however, that the selection of potential locations can be
adjusted depending on specific planning needs and
available data. Population data at the block group level
(Manson, 2020) and EV registration data are further
utilized to evaluate coverage of current and proposed
sites.
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Figure 2. Spatial Distribution of Existing Charging Stations and
EV Registrations.

2.3 Spatial Optimization

This study applies and compares three optimization
methods for EVCS site selection: the Set Covering Model
(SCM), the Maximal Covering Location Model (MCLM),
and the P-Median Model (PMM) (He et al., 2016). A
unified linear model is adopted to mathematically
formulate these models (Hillsman, 1984).

Key sets and parameters:

- I: The set of demand locations.

- J: The set of locations for charging stations,
including the existing and potential sites.

- Jexist: The set of already constructed charging
stations.

- D;: The maximum acceptable coverage radius or
distance threshold for demand location i.

- d;;: The Euclidean distance between demand
location i and charging station j.

- p: The number of new charging stations to be
established.

- w;: The demand weight of the demand location
i , represented by population.

Decision variables:

- x; € {0,1}: Binary variable; x; = 1 if a charging
station has been or will be constructed at the
location j, and x; = 0 otherwise. This study
fixes this decision variable to 1 for all pre-
existing charging stations, which means x; = 1
for Vj € Jexist-
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- ¥ €1{0,1}: Binary variable; y;; = 1 if demand
location i is covered by the charging station j
(ie., d;; < D;),and y;; = 0 otherwise.

- z; €{0,1}: Binary variable; z;; = 1 if demand
location i is assigned to the charging station j
and station j is or will be established, and z;; =
0 otherwise. Each location i can be assigned to
at most one charging station j , and it must be
the closest one.

Set-Covering aims to minimize the number of new
charging stations needed and ensures each demand
location i € I is covered by at least one charging station
(Toregas et al., 1971). This can be mathematically
formalized as follows:

Minimize Z X; (1)
jel
S.T. Zyijzl,ViEI. (2)
J€Ji

The objective function of Maximum-Covering is to
maximize the total population covered by charging
stations, while subject to the constraint on the number of
new stations that can be built (Church & Velle, 1974).
This can be mathematically formalized as follows:

Maximize Z w; t max;y;; ®)
i€l
S.T. Z % < p. (4)
J€\Jexist

P-Median seeks to minimize the total distance between
demand locations and the nearest charging stations,
weighted by the demand at each point, while subject to
the constraint on the number of new stations that can be
built (ReVelle & Swain, 1970). This can be
mathematically formalized as follows:

Minimize Z Z Wit dgj -z ©)

i€l jej

S.T. Z X = p. (6)

J€\Jexist
2.4 Evaluation of coverage ratio

To quantitatively assess the overall coverage of the
charging stations J,,, selected using different optimization
methods (existing stations, SCP, MCLM, and PMP), this
project calculates the coverage ratio of registered EVs
and the population. Specifically, the coverage ratio
represents the percentage of registered EVs w; and the
population p; with the distance to the closest charging
station smaller than or equal to a given distance threshold
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D, . The set of distance thresholds (in kilometres) is
defined differently for the metropolitan area (D, €
{1,2,3,4,5,6,78} ) and non-metro area ( Dy €
{5,10,15,20,25,30,35,40,45}). The demand locations are
the centroids of zip codes, and a demand location is
covered if its distance to the closest charging station is
smaller or equal to the distance threshold. Using the same
notation as in Section 2.3, the coverage indicators are
calculated as follows:

Lifd < Dy 3j € Jm |

covered; my = { =

0 ohterwise ()
R _ Xiercovered; Wi ®)
d dmk = ;
emand,m, Zie] Wl
R _ Yier covered; . p;
mk — :
pop.m Yiel Di ©)

These coverage ratios provide a quantitative evaluation of
how well the proposed charging station networks serve
both demand and population, offering insights into the
effectiveness of different site selection methods.

3. Results

3.1 Sites Recommendation

This study categorizes demand locations into two types:
within the seven-county metropolitan area and outside it,
assigning different coverage radii based on location type.
As shown in Figure 3, the potential station network in the
metropolitan area is denser, with smaller coverage
distances depicted in blue on the left. The maximum
distance to the nearest potential station is set at 7,597
meters for metropolitan areas and 41,956 meters for non-
metropolitan areas, as shown in the equation below.
These thresholds ensure complete coverage using SCM
optimization, as smaller distances could result in gaps in
coverage. This flexible approach allows thresholds to be
adjusted based on transportation experts' insights or
specific contextual needs.
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Figure 3. Distribution of distance to the closest existing or
potential charging station, categorized by demand location type.

Using the defined distance thresholds, the study applies
SCM and determines that adding a minimum of 25 new
charging stations to the existing infrastructure covers all
demand locations within the specified range. With p =
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25, MCLM and PMM are also solved to identify optimal
station locations, minimizing their respective objective
functions.

Intersection analysis (Table 1) shows that SCM and
MCLM produce very similar results, where 13 out of 25
(52%) of their optimal locations overlap. Figure 4 and
Figure 5 show the spatial distribution of the additional
charging station selected by SCM and MCLM. Both
models suggest the newly built charging stations should
be spread out around the boundary of the metropolitan
area and the state, particularly in regions where no
existing stations are nearby, as seen in Figure 2. In
contrast, PMM results differ significantly from SCM and
MCLM, with only 1 and 2 overlapping stations,
respectively. The locations selected by PMM are closer to
high EV charging demand points, as the new stations are
more concentrated in the metropolitan area, with only a
few located in non-metropolitan areas, as shown in Figure
7. Thus, PMM prioritizes placing stations in locations
that would be more accessible for the majority of
potential EV users. These results align with prior research
in Beijing (He et al., 2016).

SCM | MCLM PMM | total
SCM 11 13 1 25
MCLM | 13 10 2 25
PMM 1 2 22 25

Table 1. Intersection analysis of the optimal charging station
locations using SCM, MCLM, and PMM methods.
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Figure 4. Locations of charging stations (blue dots) determined
by SCM.
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Figure 5. Locations of charging stations (blue dots) determined
by MCLM.
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Figure 6. Locations of charging stations (blue dots) determined
by PMM.

3.2 Evaluation of Coverage Ratio

Figure 7 shows the coverage ratio across different
distance thresholds for existing charging stations and
additional sites selected using the three optimization
methods. The top and bottom rows of subplots represent
the coverage ratios for registered EVs and population,
respectively, while the left and right columns represent
coverage in metropolitan and non-metropolitan areas. It is
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Figure 7. Evaluation of coverage ratio of registered EVs and population by site selection methods and demand location types.

clear that as the distance threshold increases, the coverage
ratio gradually increases and approaches 100%.
Furthermore, after adding more charging stations using
the three optimization methods, the coverage exceeds that
of the scenario, considering only the existing charging
stations. This improvement is more noticeable in
metropolitan areas (left subplots) and when using EV
registration data to measure coverage (upper subplots).
This is likely because, in our optimization, the objective
function relies on the location and demand derived from
the EV registration data, without integrating population
data into the optimization process. In non-metropolitan
areas, the four curves are very close to each other or even
overlap, likely due to the lower number of EV
registrations and population in these areas, as well as the
larger range of distance thresholds. Additionally, as
shown in the top-left subplot, the PMM method results in
greater coverage improvement when the distance
threshold is set to a relatively small value. This is because
the PMM optimization considers both demand and
distance, unlike the other two methods.

4. Discussion

This study presents a flexible framework for optimizing
the allocation of charging station locations using GIS and
three spatial optimization models: the Set Covering
Model (SCM), Maximal Covering Location Model

(MCLM), and P-Median Model (PMM). Unlike prior
studies focused on urban areas, this research analyses
both metropolitan and non-metropolitan areas across
Minnesota, highlighting trade-offs in coverage, demand,
distance, and budget. SCM and MCLM produced
balanced statewide station distributions, while PMM
concentrated stations in metropolitan areas. Adding the
optimized stations significantly improved coverage,
especially in urban regions with high EV registrations.
This GIS-based framework is replicable and supports
sustainable transportation planning by integrating diverse
data sources and addressing regional variations.

Despite these advancements, the study has limitations.
First, while EV registration data served as a proxy for
demand, future growth in EV adoption was not
considered. Incorporating demand forecasting could
improve long-term planning. Additionally, this study did
not differentiate between charger types, such as Level 2
and DC fast chargers. Future research could optimize site
selection based on specific charging needs.

Second, the optimization models primarily addressed
coverage, demand, and distance but omitted other
important factors. Future work could incorporate local
climate impacts, such as how Minnesota’s harsh winters
affect EV infrastructure. Using road network distances
instead of Euclidean distances could also improve
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accuracy, especially in areas with limited road

connectivity.

Lastly, the evaluation metrics focused on EV and
population coverage but did not consider equity or
accessibility for disadvantaged communities. Future
studies could include these factors to ensure fairness in
infrastructure deployment. Balancing efficiency and
equity remains a critical challenge, especially in resource-
limited contexts.

To enhance practical applications, future research could
develop interactive  decision-support  tools  for
stakeholders, allowing for dynamic visualization of site
selection factors and scenario-based adjustments.
Collaborating with transportation agencies could also
align optimization models with regional planning
priorities, ensuring realistic and actionable outcomes.
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