Spatial Susceptibility Mapping of Boreal Forest Fires: Insights from Quebec’s Historical and Future Trends (1980-2050)
Navid Mahdizadeh Gharakhanlou
Laboratoire de Géosimulation Environnementale (LEDGE), Département de Géographie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
Liliana Perez
Laboratoire de Géosimulation Environnementale (LEDGE), Département de Géographie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
Related authors
No articles found.
Saeed Harati-Asl, Liliana Perez, and Roberto Molowny-Horas
Geosci. Model Dev., 17, 7423–7443, https://doi.org/10.5194/gmd-17-7423-2024, https://doi.org/10.5194/gmd-17-7423-2024, 2024
Short summary
Short summary
Social–ecological systems are the subject of many sustainability problems. Because of the complexity of these systems, we must be careful when intervening in them; otherwise we may cause irreversible damage. Using computer models, we can gain insight about these complex systems without harming them. In this paper we describe how we connected an ecological model of forest insect infestation with a social model of cooperation and simulated an intervention measure to save a forest from infestation.
Jeffrey Katan and Liliana Perez
Nat. Hazards Earth Syst. Sci., 21, 3141–3160, https://doi.org/10.5194/nhess-21-3141-2021, https://doi.org/10.5194/nhess-21-3141-2021, 2021
Short summary
Short summary
Wildfires are an integral part of ecosystems worldwide, but they also pose a serious risk to human life and property. To further our understanding of wildfires and allow experimentation without recourse to live fires, this study presents an agent-based modelling approach to combine the complexity possible with physical models with the ease of computation of empirical models. Model calibration and validation show bottom-up simulation tracks the core elements of complexity of fire across scales.
Phillipe Gauvin-Bourdon, James King, and Liliana Perez
Earth Surf. Dynam., 9, 29–45, https://doi.org/10.5194/esurf-9-29-2021, https://doi.org/10.5194/esurf-9-29-2021, 2021
Short summary
Short summary
Arid ecosystem health is a complex interaction between vegetation and climate. Coupled with impacts from grazing, it can result in quick changes in vegetation cover. We present a wind erosion and vegetation health model with active grazers over 100-year tests to find the limits of arid environments for different levels of vegetation, rainfall, wind speed, and grazing. The model shows the resilience of grass landscapes to grazing and its role as an improved tool for managing arid landscapes.